A Self-Regulated Microfluidic Device with Thermal Bubble Micropumps
Abstract
:1. Introduction
2. Materials
3. Results and Discussion
3.1. Thermal Bubble Micropump Characteristics
3.2. Micropump Characterization
3.3. Active Microchip with Micropumps
4. Immunoassays in Active Microfluidic Chip
5. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sutarlie, L.; Yang, K.L. Monitoring spatial distribution of ethanol in microfluidic channels by using a thin layer of cholesteric liquid crystal. Lab Chip 2011, 11, 4093–4098. [Google Scholar] [CrossRef]
- Swerdlow, H.; Jones, B.J.; Wittwer, C.T. Fully automated DNA reaction and analysis in a fluidic capillary instrument. Anal. Chem. 1997, 69, 848–855. [Google Scholar] [CrossRef]
- Dekker, S.; Buesink, W.; Blom, M.; Alessio, M.; Verplanck, N.; Hihoud, M.; Dehan, C.; César, W.; Le Nel, A.; van den Berg, A.; et al. Standardized and modular microfluidic platform for fast Lab on Chip system development. Sens. Actuators B Chem. 2018, 272, 468–478. [Google Scholar] [CrossRef]
- Yuen, P.K.; Bliss, J.T.; Thompson, C.C.; Peterson, R.C. Multidimensional modular microfluidic system. Lab Chip 2009, 9, 3303–3305. [Google Scholar] [CrossRef]
- Park, J.; Han, D.H.; Park, J.K. Towards practical sample preparation in point-of-care testing: User-friendly microfluidic devices. Lab Chip 2020, 20, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Yuen, P.K. Fluid control in microfluidic devices using a fluid conveyance extension and an absorbent microfluidic flow modulator. Lab Chip 2013, 13, 1737–1742. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Z.; Li, D. Review on Micro Pump for Microfluidics. J. Beijing Univ. Technol. 2018, 44, 812–824. [Google Scholar]
- Mao, Z.; Iizuka, T.; Maeda, S. Bidirectional electrohydrodynamic pump with high symmetrical performance and its application to a tube actuator. Sens. Actuators A Phys. 2021, 332, 113168. [Google Scholar] [CrossRef]
- Mao, Z.; Asai, Y.; Yamanoi, A.; Seki, Y.; Wiranata, A.; Minaminosono, A. Fluidic rolling robot using voltage-driven oscillating liquid. Smart Mater. Struct. 2022, 31, 105006. [Google Scholar] [CrossRef]
- Zhou, H.; Gué, A.M. Simulation model and droplet ejection performance of a thermal-bubble microejector. Sens. Actuators B Chem. 2010, 145, 311–319. [Google Scholar] [CrossRef]
- Jugieu, D.; Phou, T.; Gué, A.M. Technological development of a micro-array of individually addressable ejectors. Sens. Actuators B Chem. 2006, 114, 656–664. [Google Scholar] [CrossRef]
- Huang, C.; Tsou, C. The implementation of a thermal bubble actuated microfluidic chip with microvalve, micropump and micromixer. Sens. Actuators A Phys. 2014, 210, 147–156. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, M.; Lin, Y.; Xu, J. Trapping and control of bubbles in various microfluidic applications. Lab Chip 2020, 20, 4512–4527. [Google Scholar] [CrossRef]
- Suh, Y.; Son, G.; Hur, N.; Simos, T.E.; Psihoyios, G.; Tsitouras, C. Numerical Simulation of Thermal Inkjet with Bubble Growth, Droplet Ejection and Ink Refill Motion. In AIP Conference Proceedings; American Institute of Physics: New York, NY, USA, 2007. [Google Scholar]
- Einat, M.; Grajower, M. Microboiling Measurements of Thermal-Inkjet Heaters. J. Microelectromech. Syst. 2010, 19, 391–395. [Google Scholar] [CrossRef]
- Mao, C.Y.; Yang, J.C.; Wu, C.L.; Chiu, C.L.; Chen, C.J. Application of micro-fuel injection system by thermal bubble inkjet technology. In Proceedings of the 19th International Conference on Digital Printing Technologies (NIP19), New Orleans, LA, USA, 28 September–3 October 2003. [Google Scholar]
- Aman, J.; Henshaw, P.; Ting, D.S.K. Bubble-pump-driven LiBr-H2O and LiCl-H2O absorption air-conditioning systems. Therm. Sci. Eng. Prog. 2018, 6, 316–322. [Google Scholar] [CrossRef]
- Pritchard, R.H.; Zhukov, A.A.; Fullerton, J.N.; Want, A.J.; Hussain, F.; la Cour, M.F.; Bashtanov, M.E.; Gold, R.D.; Hailes, A.; Banham-Hall, E.; et al. Cell sorting actuated by a microfluidic inertial vortex. Lab Chip 2019, 19, 2456–2465. [Google Scholar] [CrossRef]
- Kaba, A.M.; Jeon, H.; Park, A.; Yi, K.; Baek, S.; Park, A.; Kim, D. Cavitation-microstreaming-based lysis and DNA extraction using a laser-machined polycarbonate microfluidic chip. Sens. Actuators B-Chem. 2021, 346, 130511. [Google Scholar] [CrossRef]
- Habibi Matin, M.; Fazeli, A.; Moghaddam, S. Thermographic characterization of thin liquid film formation and evaporation in microchannels. Lab Chip 2019, 19, 2610–2618. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, W.; Sun, Q.; Miao, Z. Numerical evaluation of thermal performances of diffusion–absorption refrigeration using 1,3-dimethylimidazolylium dimethylphosphate/methanol/helium as working fluid. Energy Convers. Manag. 2017, 152, 201–213. [Google Scholar] [CrossRef]
- Pan, L.; Yue, W.; Wei, J.; Chen, D. Analysis of flow characteristics in thermal-bubble actuated diffuser-nozzle valveless micropump. Journal of Chongqing University. Nat. Sci. Ed. 2013, 36, 12–17. [Google Scholar]
- Shi, N.; Easley, C.J. Programmable microChopper Device with On-Chip Droplet Mergers for Continuous Assay Calibration. Micromachines 2020, 11, 620. [Google Scholar] [CrossRef]
- Gómez-de Pedro, S.; Lopes, D.; Miltsov, S.; Izquierdo, D.; Alonso-Chamarro, J.; Puyol, M. Optical microfluidic system based on ionophore modified gold nanoparticles for the continuous monitoring of mercuric ion. Sens. Actuators B Chem. 2014, 194, 19–26. [Google Scholar] [CrossRef]
Sample | Microchip (pg/mL) | HPLC (pg/mL) |
---|---|---|
Semen Platycladi | NA a | <0.0500 * |
Semen Platycladi + 0.25 pg/mL AF | 0.2470 | 0.2532 |
Pericarpium Citri Reticulataeas | NA a | <0.0500 * |
Pericarpium Citri Reticulataeas + 0.15 pg/mL AF | 0.1641 | 0.2000 |
Soft-Shelled Turtle | NA a | <0.0500 * |
Hellebore | 0.0697 | <0.0500 * |
Semen Coicis | NA a | 0.0512 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, G.; Wu, X.; Liu, D.; Liao, L.; Zhang, D.; Zhang, Y.; Mao, T.; He, Y.; Huang, P.; Wang, W.; et al. A Self-Regulated Microfluidic Device with Thermal Bubble Micropumps. Micromachines 2022, 13, 1620. https://doi.org/10.3390/mi13101620
Guo G, Wu X, Liu D, Liao L, Zhang D, Zhang Y, Mao T, He Y, Huang P, Wang W, et al. A Self-Regulated Microfluidic Device with Thermal Bubble Micropumps. Micromachines. 2022; 13(10):1620. https://doi.org/10.3390/mi13101620
Chicago/Turabian StyleGuo, Gang, Xuanye Wu, Demeng Liu, Lingni Liao, Di Zhang, Yi Zhang, Tianjiao Mao, Yuhan He, Peng Huang, Wei Wang, and et al. 2022. "A Self-Regulated Microfluidic Device with Thermal Bubble Micropumps" Micromachines 13, no. 10: 1620. https://doi.org/10.3390/mi13101620
APA StyleGuo, G., Wu, X., Liu, D., Liao, L., Zhang, D., Zhang, Y., Mao, T., He, Y., Huang, P., Wang, W., Su, L., Wang, S., Liu, Q., Ma, X., Shi, N., & Guan, Y. (2022). A Self-Regulated Microfluidic Device with Thermal Bubble Micropumps. Micromachines, 13(10), 1620. https://doi.org/10.3390/mi13101620