Micromanufactured Tactile Samples for Characterization of Rough and Dry Tactile Perception
Abstract
:1. Introduction
2. Tactile Samples and Methods
2.1. Ranking Method
2.2. Roughness Perception Experiments
2.2.1. Tactile Samples for Roughness Perception Experiments
2.2.2. Roughness Perception Experiments with Tactile Samples
2.3. Dry/Wet Perception Experiments
2.3.1. Tactile Samples for Dry/Wet Perception Experiments
2.3.2. Dry/Wet Perception Experiments Using Tactile Samples with Random Patterns
2.3.3. Dry/Wet Perception Experiments Using Tactile Samples with Square Patterns
Tactile Perception | Texture of Tactile Samples | Parameters | Objectives: To Investigate | Number of Participants | Results |
---|---|---|---|---|---|
Roughness | Stripe (Figure 1) | Ridge and groove widths | The effects of the ridge and groove widths | 11 (10 males and 1 female, aged 20 to 29 years) | Section 3.1 |
Which of the ridge and the groove widths was more dominant | 5 (5 males, aged 20 to 29 years) | Section 3.1 | |||
Dryness | Random (Figure 2) | Etching time/roughness | The effects of the surface roughness | 9 (8 males and 1 female, aged 20 to 29 years) | Section 3.2.1 |
Square (Figure 3) | Square width and gap between the squares () | The effects of the feature size | 14 (12 males and 2 females, aged 20 to 29 years) | Section 3.2.2 | |
Square width and gap between the squares | How the dryness perception varied with the feature size below and above 30 µm | 7 (7 males, aged 20 to 29 years) | Section 3.2.2 | ||
The effects of the gap | 10 (9 males and 1 female, aged 20 to 29 years) | Section 3.2.2 |
3. Results and Discussion
3.1. Roughness Perception Experiments
3.2. Dry/Wet Perception Experiments
3.2.1. Experiments with Tactile Samples with Random Patterns
3.2.2. Experiments with Tactile Samples with Square Patterns
3.3. Discussion
3.3.1. Roughness Feeling
3.3.2. Dry/Wet Feeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Okamoto, S.; Nagano, H.; Yamada, Y. Psychophysical dimensions of tactile perception of textures. IEEE Trans. Hapt. 2013, 6, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Tachi, S. Telexistence: Enabling humans to be virtually ubiquitous. IEEE Comput. Graph. Appl. 2016, 36, 8–14. [Google Scholar] [CrossRef]
- Tanaka, M.; Numazawa, Y. Rating and valuation of human haptic sensation. Int. J. Appl. Electromagn. Mech. 2004, 19, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Chen, N.; Zhang, J.; Chen, S.; Ge, S.; Zhu, H.; Zhang, S.; Yang, H. Characterization of tactile perception and optimal exploration movement. Tribol. Lett. 2015, 58, 28. [Google Scholar] [CrossRef]
- Kosemura, Y.; Ishikawa, H.; Watanabe, J.; Miki, N. Characterization of surfaces virtually created using MEMS tactile display. Jpn. J. Appl. Phys. 2014, 53, 6–11. [Google Scholar] [CrossRef]
- Kosemura, Y.; Hasegawa, S.; Miki, N. Surface properties that can be displayed by a MEMS-based mechanical tactile display. Micro Nano Lett. 2016, 11, 240. [Google Scholar] [CrossRef]
- Tymms, C.; Zorin, D.; Gardner, E.P. Tactile perception of the roughness of 3D-printd textures. J. Neurophsiol. 2017, 119, 862. [Google Scholar] [CrossRef] [PubMed]
- van Kuilenburg, J.; Masen, M.A.; Groenendijk, M.N.W.; Bana, V.; van der Heide, E. An experimental study on the relation between surface textures and tactile friction. Tribol. Int. 2012, 48, 15. [Google Scholar] [CrossRef]
- Xu, J.; Nonomura, Y.; Mineta, T. Evaluation of tactile sensation using periodic Si micro-bump arrayed surface with various bump sizes. IEEJ Trans. Sens. Micromach. 2019, 139, 393–399. [Google Scholar] [CrossRef]
- Kawazoe, M.; Kosemura, Y.; Miki, N. Encoding and presentation of surface textures using a mechanotactile display. Sens. Actuators A Phys. 2017, 261, 30–39. [Google Scholar] [CrossRef]
- Kawazoe, N.; Miki, N. Tactile samples with variable surface textures to investigate tactile perception characteristic. J. Micromech. Microeng. 2020, 30, 105011. [Google Scholar] [CrossRef]
- Nakamae, M. Study of the Reliability of Visual Evaluation by the Ranking Method: Analysis of ordinal scale and psychological scaling using the normalized-rank approach. Jpn. J. Radiol. Technol. 2000, 56, 725–730. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, S.; Nagano, H.; Ho, H.N. Pervasive Haptics: Science, Design, and Application; Springer: Tokyo, Japan, 2016; pp. 3–20. [Google Scholar]
- Yoshioka, T.; Gibb, B.; Dorsch, A.K.; Hsiao, S.S.; Johnson, K.O. Neural coding mechanisms underlying perceived roughness of finely textured surfaces. J. Neurosci. 2001, 21, 6905–6916. [Google Scholar] [CrossRef]
- Connor, C.E.; Hsiao, S.S.; Phillips, J.R.; Johnson, K.O. Tactile roughness: Neural codes that account for psychophysical magnitude estimates. J. Neurosci. 1990, 10, 3823–3836. [Google Scholar] [CrossRef]
- Blake, D.T.; Hsiao, S.S.; Johnson, K.O. Neural coding mechanisms in tactile pattern recognition: The relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. J. Neurosci. 1997, 17, 7480–7489. [Google Scholar] [CrossRef] [Green Version]
- Bensmaia, S.J.; Hollins, M. The vibrations of texture. Somatosens. Motor Res. 2003, 20, 33–43. [Google Scholar] [CrossRef]
- Lederman, S.J. Tactile roughness of grooved surfaces: The touching process and effects of macro- and microsurface structure. Percept. Psychophys. 1974, 16, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Cascio, C.J.; Sathian, K. Temporal cues contribute to tactile perception of roughness. J. Neurosci. 2001, 21, 5289–5296. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.J.; Oh, D.J.; Jung, P.G.; Lee, S.M.; Go, J.S.; Kim, J.-H.; Hwang, K.-Y.; Ko, J.S. Dry etching of polydimethylsiloxane using microwave plasma. J. Micromech. Microeng. 2009, 19, 095010. [Google Scholar] [CrossRef]
- Hill, S.; Qian, W.; Chen, W.; Fu, J. Surface micromachining of polydimethylsiloxane for microfluidics applications. Biomicrofluidics 2016, 10, 54114. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, T.; Chen, J.; Ettelaie, R.; Holmes, M.; Henson, B. Human roughness perception and possible factors effecting roughness sensation. J. Text. Stud. 2016, 48, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miki, N.; Spearing, S.M. Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers. J. Appl. Phys. 2003, 94, 6800. [Google Scholar] [CrossRef]
- Shibahara, M.; Sato, K. Illusion of wetness by dynamic touch. IEEE Trans. Hapt. 2019, 12, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Drewing, K.; Weyel, C.; Celebi, H.; Kaya, D. Feeling and feelings: Affective and perceptual dimensions of touched materials and their connection. In Proceedings of the IEEE World Haptics Conference (WHC), Munich, Germany, 5 June 2017. [Google Scholar] [CrossRef]
- Kawasegi, N.; Fujii, M.; Shimizu, T.; Sekiguchi, N.; Sumioka, J.; Doi, Y. Physical properties and tactile sensory perception of microtexturedmolded plastics. Precis. Eng. 2014, 38, 292–299. [Google Scholar] [CrossRef]
(, ) (µm) | (25, 10) | (25, 20) | (25, 30) | (25, 40) | (25, 50) |
(15, 10) | N.S. | + | + | + | + |
(15, 20) | − | N.S. | + | + | + |
(15, 30) | − | − | N.S. | + | + |
(15, 40) | − | − | N.S. | N.S. | N.S. |
(15, 50) | − | − | − | N.S. | N.S. |
(,) (µm) | (50, 10) | (50, 20) | (50, 30) | (50, 40) | (50, 50) |
(40, 10) | N.S. | + | + | + | + |
(40, 20) | − | N.S. | N.S. | + | + |
(40, 30) | − | − | − | N.S. | + |
(40, 40) | − | − | − | − | N.S. |
(40, 50) | − | − | − | − | − |
(µm) | : 15 –25 (µm) | : 40 –50 (µm) |
10 | 7 | 7 |
20 | 8 | 6 |
30 | 9 | 0 * |
40 | 10 | 2 * |
50 | 9 | 3 * |
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | |
0.1 | * | * | * | * | * | * | * | * | * | |
0.2 | * | * | * | * | * | * | * | * | ||
0.3 | * | * | * | * | * | * | * | |||
0.4 | * | * | * | * | * | * | ||||
0.5 | * | * | * | * | * | |||||
0.6 | * | * | * | * | ||||||
0.7 | * | * | * | |||||||
0.8 | * | * | ||||||||
0.9 | N.S. | |||||||||
1.0 |
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | |
0.1 | * | * | * | * | * | * | * | * | * | |
0.2 | * | * | * | * | * | * | * | * | ||
0.3 | * | * | * | * | * | * | * | |||
0.4 | * | * | * | * | * | * | ||||
0.5 | N.S. | * | * | * | * | |||||
0.6 | N.S. | * | * | * | ||||||
0.7 | N.S. | * | * | |||||||
0.8 | N.S. | N.S. | ||||||||
0.9 | N.S. | |||||||||
1.0 |
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | |
5 | * | * | * | * | * | * | * | * | * | |
10 | * | * | * | * | * | * | * | * | ||
15 | N.S. | * | * | * | * | * | * | |||
20 | N.S. | * | * | * | * | * | ||||
25 | N.S. | * | * | * | * | |||||
30 | N.S. | * | * | * | ||||||
35 | N.S. | N.S. | * | |||||||
40 | N.S. | N.S. | ||||||||
45 | N.S. | |||||||||
50 |
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | |
5 | * | * | * | * | * | * | * | * | * | |
10 | * | * | * | * | * | * | * | * | ||
15 | N.S. | * | * | * | * | * | * | |||
20 | N.S. | * | * | * | * | * | ||||
25 | N.S. | * | * | * | * | |||||
30 | N.S. | * | * | * | ||||||
35 | N.S. | N.S. | * | |||||||
40 | N.S. | N.S. | ||||||||
45 | N.S. | |||||||||
50 |
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | |
5 | * | * | * | * | * | * | * | * | * | |
10 | * | * | * | * | * | * | * | * | ||
15 | * | * | * | * | * | * | * | |||
20 | N.S. | * | * | * | * | * | ||||
25 | N.S. | * | * | * | * | |||||
30 | N.S. | * | * | * | ||||||
35 | N.S. | * | * | |||||||
40 | N.S. | * | ||||||||
45 | N.S. | |||||||||
50 |
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | |
5 | N.S. | * | * | * | * | * | * | * | * | |
10 | * | * | * | * | * | * | * | * | ||
15 | N.S. | * | * | * | * | * | * | |||
20 | N.S. | * | * | * | * | * | ||||
25 | N.S. | * | * | * | * | |||||
30 | N.S. | * | * | * | ||||||
35 | N.S. | * | * | |||||||
40 | N.S. | * | ||||||||
45 | N.S. | |||||||||
50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanagibashi, K.; Miki, N. Micromanufactured Tactile Samples for Characterization of Rough and Dry Tactile Perception. Micromachines 2022, 13, 1685. https://doi.org/10.3390/mi13101685
Yanagibashi K, Miki N. Micromanufactured Tactile Samples for Characterization of Rough and Dry Tactile Perception. Micromachines. 2022; 13(10):1685. https://doi.org/10.3390/mi13101685
Chicago/Turabian StyleYanagibashi, Keiichiro, and Norihisa Miki. 2022. "Micromanufactured Tactile Samples for Characterization of Rough and Dry Tactile Perception" Micromachines 13, no. 10: 1685. https://doi.org/10.3390/mi13101685
APA StyleYanagibashi, K., & Miki, N. (2022). Micromanufactured Tactile Samples for Characterization of Rough and Dry Tactile Perception. Micromachines, 13(10), 1685. https://doi.org/10.3390/mi13101685