TCAD-Based Investigation of a 650 V 4H-SiC Trench MOSFET with a Hetero-Junction Body Diode
Abstract
:1. Introduction
2. Device Structure
3. Simulation Results and Discussions
4. Proposed Fabrication Process
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Casady, J.B.; Johnson, R.W.J.S.-S.E. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid-State Electron. 1996, 39, 1409–1422. [Google Scholar] [CrossRef]
- Meli, A.; Muoio, A.; Reitano, R.; Sangregorio, E.; Calcagno, L.; Trotta, A.; Parisi, M.; Meda, L.; La Via, F. Effect of the Oxidation Process on Carrier Lifetime and on SF Defects of 4H SiC Thick Epilayer for Detection Applications. Micromachines 2022, 13, 1042. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Ha, J.; Kim, K.; Bae, H.; Kim, C.E.; Kim, J. Influence of Radiation-Induced Displacement Defect in 1.2 kV SiC Metal-Oxide-Semiconductor Field-Effect Transistors. Micromachines 2022, 13, 901. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cheng, X.; Zheng, L.; Sledziewski, T.; Yu, Y. Impact of the transition region between active area and edge termination on electrical performance of SiC MOSFET. Solid-State Electron. 2020, 171, 107873. [Google Scholar] [CrossRef]
- Yano, K.; Nakazato, K. A high-current-gain low-temperature pseudo-heterojunction bipolar transistor utilizing sidewall base-contact structure (SICOS). IEEE Trans. Electron Devices 1991, 38, 555–565. [Google Scholar] [CrossRef]
- Grekov, A.; Maximenko, S.; Sudarshan, T.S. Effect of Basal Plane Dislocations on Characteristics of Diffused 4H-SiC p-i-n Diodes. IEEE Trans. Electron Devices 2005, 52, 2546–2551. [Google Scholar] [CrossRef]
- Kono, H.; Asaba, S.; Ohashi, T.; Ogata, T.; Furukawa, M.; Sano, K.; Yamaguchi, M.; Suzuki, H. Improving the specific on-resistance and short-circuit ruggedness tradeoff of 1.2-kV-class SBD-embedded SiC MOSFETs through cell pitch reduction and internal resistance optimization. In Proceedings of the 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Nagoya, Japan, 30 May–3 June 2021; pp. 227–230. [Google Scholar]
- Ohashi, T.; Kono, H.; Kanie, S.; Ogata, T.; Sano, K.; Suzuki, H.; Asaba, S.; Fukatsu, S.; Iijima, R. Improved Clamping Capability of Parasitic Body Diode Utilizing New Equivalent Circuit Model of SBD-embedded SiC MOSFET. In Proceedings of the 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Nagoya, Japan, 30 May–3 June 2021; pp. 79–82. [Google Scholar]
- Song, G.; Wang, Y.; Chen, X.; Li, C. Investigation on electrical characteristic of 3.3kV SiC MOSFET with integrated SBD. In Proceedings of the PCIM Asia 2021, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Shenzhen, China, 9–11 September 2021; pp. 1–4. [Google Scholar]
- Wu, Z.; Xia, C.; Yi, B.; Cheng, J.; Huang, H.; Kong, M.; Yang, H.; Shi, W. A split-gate SiC trench MOSFET with embedded unipolar diode for improved performances. In Proceedings of the 2021 IEEE 14th International Conference on ASIC (ASICON), Kunming, China, 26–29 October 2021; pp. 1–4. [Google Scholar]
- Huang, M.M.; Li, R.; Yang, Z.M.; Ma, Y.; Li, Y.; Zhang, X.; Gong, M. A Multiepi Superjunction MOSFET With a Lightly Doped MOS-Channel Diode for Improving Reverse Recovery. IEEE Trans. Electron Devices 2021, 68, 2401–2407. [Google Scholar] [CrossRef]
- Li, X.Y.; Jia, Y.P.; Zhou, X.T.; Zhao, Y.F.; Wu, Y.; Hu, D.Q.; Fang, X.Y.; Deng, Z.H. A Novel Split-Gate-Trench MOSFET Integrated With Normal Gate and Built-In Channel Diode. IEEE J. Electron Devices Soc. 2021, 9, 839–845. [Google Scholar] [CrossRef]
- Tanaka, H.; Hayashi, T.; Shimoida, Y.; Yamagami, S.; Tanimoto, S.; Hoshi, M. Ultra-low Von and High Voltage 4H-SiC Heterojunction Diode. In Proceedings of the ISPSD ’05, The 17th International Symposium on Power Semiconductor Devices and ICs, Santa Barbara, CA, USA, 23–26 May 2005; pp. 287–290. [Google Scholar]
- Na, J.; Kim, K. 3.3 kV 4H-SiC MOSFET with embeded hetero junction body diode for low switching loss. In Proceedings of the 2022 International Conference on Electronics, Information, and Communication (ICEIC), Jeju, Korea, 6–9 February 2022; pp. 1–4. [Google Scholar]
- Kim, J.; Kim, K. A novel 4H-SiC super junction UMOSFET with heterojunction diode for enhanced reverse recovery characteristics. In Proceedings of the 2020 International Conference on Electronics, Information, and Communication (ICEIC), Barcelona, Spain, 19–22 January 2020; pp. 1–4. [Google Scholar]
- Kim, J.; Kim, K. Single-Event Burnout Hardening 4H-SiC UMOSFET Structure. IEEE Trans. Device Mater. Reliab. 2022, 22, 164–168. [Google Scholar] [CrossRef]
- An, J.; Hu, S. Heterojunction Diode Shielded SiC Split-Gate Trench MOSFET With Optimized Reverse Recovery Characteristic and Low Switching Loss. IEEE Access 2019, 7, 28592–28596. [Google Scholar] [CrossRef]
- Yu, H.Y.; Liang, S.W.; Liu, H.Z.; Wang, J.; Shen, Z.J. Numerical Study of SiC MOSFET With Integrated n-/n-Type Poly-Si/SiC Heterojunction Freewheeling Diode. IEEE Trans. Electron Devices 2021, 68, 4571–4576. [Google Scholar] [CrossRef]
- Yang, T.T.; Wang, Y.; Yue, R.F. SiC Trench MOSFET With Reduced Switching Loss and Increased Short-Circuit Capability. IEEE Trans. Electron Devices 2020, 67, 3685–3690. [Google Scholar] [CrossRef]
- Okuto, Y.; Crowell, C.R. Threshold energy effect on avalanche breakdown voltage in semiconductor junctions. Solid State Electron. 1975, 18, 161–168. [Google Scholar] [CrossRef]
- Lombardi, C.; Manzini, S.; Saporito, A.; Vanzi, M. Physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1988, 7, 1164–1171. [Google Scholar] [CrossRef]
- Lu, C.-Y.; Cooper, J.A.; Tsuji, T.; Chung, G.; Williams, J.R.; McDonald, K.; Feldman, L.C. Effect of Process Variations and Ambient Temperature on Electron Mobility at the SiO[sub 2]/4H-SiC Interface. IEEE Trans. Electron Devices 2003, 50, 1582–1588. [Google Scholar]
- Uchida, K.; Hiyoshi, T.; Nishiguchi, T.; Yamamoto, H.; Matsukawa, S.; Furumai, M.; Mikamura, Y. The Influence of Surface Pit Shape on 4H-SiC MOSFETs Reliability under High Temperature Bias Tests. Mater. Sci. Forum 2016, 858, 840–843. [Google Scholar] [CrossRef]
- Vudumula, P.; Kotamraju, S. Design and Optimization of 1.2-kV SiC Planar Inversion MOSFET Using Split Dummy Gate Concept for High-Frequency Applications. IEEE Trans. Electron Devices 2019, 66, 5266–5271. [Google Scholar] [CrossRef]
- Weijiang, Z.; Tobikawa, K.; Nagayama, T.; Sakai, S. A study on Silicon Carbide (SiC) wafer using ion implantation. In Proceedings of the 2014 20th International Conference on Ion Implantation Technology (IIT), Portland, OR, USA, 26 June–4 July 2014; pp. 1–4. [Google Scholar]
- Shen, H.-J.; Tang, Y.-C.; Peng, Z.-Y.; Deng, X.-C.; Bai, Y.; Wang, Y.-Y.; Li, C.-Z.; Liu, K.-A.; Liu, X.-Y. Fabrication and Characterization of 1700 V 4H-SiC Vertical Double-Implanted Metal-Oxide-Semiconductor Field-Effect Transistors. Chin. Phys. Lett. 2015, 32, 127101. [Google Scholar] [CrossRef]
Parameters | C-MOS | HJD-MOS | Unit |
---|---|---|---|
Cell pitch | 2.5 | 2.5 | μm |
Depth of P+ well | 1.4 | 1.4 | μm |
Depth of P-base | 0.8 | 0.8 | μm |
Depth of N+ source | 0.3 | 0.3 | μm |
Depth of trench gate | 1.2 | 0.62 | μm |
Depth of CSL 1 | / | 1.35 | μm |
Depth of CSL 2 | / | 1.6 | μm |
Width of P+ well (left/up) | 0.35 | 0.5 | μm |
Width of P+ well (left/down) | 0.35 | 0.85 | μm |
Width of P+ well (right/up) | 0.5 | 0.45 | μm |
Width of P+ well (right/down) | 0.85 | 0.95 | μm |
Width of trench gate | 0.7 | 0.7 | μm |
Width of N+ source | 0.45 | 0.45 | μm |
Width of P-base | 0.45 | 0.45 | μm |
Width of CSL 1 | / | 0.2 | μm |
Width of P-poly | / | 0.35 | μm |
Thickness of gate oxide (bottom) | 120 | 120 | nm |
Thickness of P-poly (side) | / | 60 | nm |
Thickness of gate oxide (up) | 200 | 200 | nm |
Thickness of gate oxide (side) | 60 | 60 | nm |
Thickness of P-poly (bottom) | / | 120 | nm |
P+ well doping | 1 × 1019 | 1 × 1019 | cm−3 |
N+ source doping | 1 × 1019 | 1 × 1019 | cm−3 |
P-base doping | 3 × 1017 | 3 × 1017 | cm−3 |
N drift doping | 7.5 × 1015 | 7.5 × 1015 | cm−3 |
N sub doping | 1 × 1019 | 1 × 1019 | cm−3 |
CSL 1 doping | / | 5 × 1017 | cm−3 |
CSL 2 doping | / | 2 × 1016 | cm−3 |
P-poly doping | / | 1 × 1020 | cm−3 |
Symbol | C-MOS | HJD-MOS | Unit |
---|---|---|---|
BV | 1043 | 1084 | V |
Ron | 6.51 | 2.27 | mΩ×cm2 |
Qgd | 84 | 14 | nC/cm2 |
Vf | 2.8 | 1.2 | V |
BFOM a | 167 | 518 | MW/cm2 |
Ron, sp × Qgd | 546.84 | 31.78 | mΩ×nC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Guo, J.; Liu, C.; Wu, H.; Huang, Z.; Hu, S. TCAD-Based Investigation of a 650 V 4H-SiC Trench MOSFET with a Hetero-Junction Body Diode. Micromachines 2022, 13, 1741. https://doi.org/10.3390/mi13101741
Wang R, Guo J, Liu C, Wu H, Huang Z, Hu S. TCAD-Based Investigation of a 650 V 4H-SiC Trench MOSFET with a Hetero-Junction Body Diode. Micromachines. 2022; 13(10):1741. https://doi.org/10.3390/mi13101741
Chicago/Turabian StyleWang, Ruoyu, Jingwei Guo, Chang Liu, Hao Wu, Zhiyong Huang, and Shengdong Hu. 2022. "TCAD-Based Investigation of a 650 V 4H-SiC Trench MOSFET with a Hetero-Junction Body Diode" Micromachines 13, no. 10: 1741. https://doi.org/10.3390/mi13101741
APA StyleWang, R., Guo, J., Liu, C., Wu, H., Huang, Z., & Hu, S. (2022). TCAD-Based Investigation of a 650 V 4H-SiC Trench MOSFET with a Hetero-Junction Body Diode. Micromachines, 13(10), 1741. https://doi.org/10.3390/mi13101741