Fabrication and Characterization of an Optimized Low-Loss Two-Mode Fiber for Optoacoustic Sensing
Abstract
:1. Introduction
2. Low-Loss MSI 2-LP-Mode Fiber
3. BBS and FBS Effects in MSI 2-LP-Mode Fiber
3.1. BBS Effect in MSI 2-LP-Mode Fiber
3.2. FBS Effect in MSI 2-LP-Mode Fiber
4. Discriminative Sensing of Temperature and Acoustic Impedance by Using the MSI 2-LP-Mode Fiber
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pierre, S.; Denis, M.; Marianne, B.A.; Koen, D.J.; Frank, A.; Amado, M.V.; Rodrigo, A.; Chigo, M.O. Low-Differential-Mode-Group-Delay 9-LP-Mode Fiber. J. Lightwave Technol. 2016, 34, 425–430. [Google Scholar]
- Li, A.; Wang, Y.F.; Hu, Q.; Shieh, W. Few-mode fiber based optical sensors. Opt. Express 2015, 23, 1139–1150. [Google Scholar] [CrossRef] [PubMed]
- Koebele, C.; Salsi, M.; Sperti, D.; Tran, P.; Brindel, P.; Mardoyan, H.; Bigo, S.; Boutin, A.; Verluise, F.; Sillard, P.; et al. Two mode transmission at 2x100Gb/s, over 40km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer. Opt. Express 2011, 19, 16593–16600. [Google Scholar] [CrossRef] [PubMed]
- Koonen, A.M.J.; Chen, H.S.; Sleiffer, V.A.J.M.; Uden, R.G.H.V.; Okonkwo, C.M. Compact integrated solutions for mode de-multiplexing. In Proceedings of the OECC/ACOFT, Melbourne, Australia, 6–10 July 2014. [Google Scholar]
- Li, M.J.; Hoover, B.; Li, S.P.; Bickham, S.; Ten, S.; Ip, E.; Huang, Y.K.; Mateo, E.; Shao, Y.; Wang, T. Low Delay and Large Effective Area Few-Mode Fibers for Mode-Division Multiplexing. In Proceedings of the 17th Opto-Electronics and Communications Conference, Busan, Korea, 2–6 July 2012. [Google Scholar]
- Pierre, S.; Denis, M. Few-Mode Fibers for Mode-Division-Multiplexed Systems. J. Lightwave Technol. 2014, 32, 2824–2829. [Google Scholar]
- Nielsen, L.G.; Sun, Y.; Nicholson, J.M.; Jakobsen, D.; Jespersen, K.G.; Pálsdóttir, B. Few-Mode Transmission Fiber with Low DGD, Low Mode Coupling, and Low Loss. J. Lightwave Technol. 2012, 30, 3693–3698. [Google Scholar] [CrossRef]
- Jespersen, K.; Li, Z.; Nielsen, G.; Pálsdóttir, B.; Poletti, F.; Nicholson, J.W. Measuring Distributed Mode Scattering in Long, Few-Mode Fibers. In Proceedings of the OFC/NFOEC, Los Angeles, CA, USA, 4–8 March 2012. [Google Scholar]
- Zhang, Z.Z.; Lu, Y.G.; Pan, Y.H.; Bao, X.Y.; Chen, L. Trench-assisted multimode fiber used in Brillouin optical time domain sensors. Opt. Express 2019, 27, 11396–11405. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.Y.; Chen, L. Recent Progress in Brillouin Scattering Based Fiber Sensors. Sensors 2011, 11, 4152–4187. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, M.; Lu, Y.; Lu, P.; Bao, X.; Wang, L.; Messasseq, Y.; Larochelle, S. Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber. Opt. Lett. 2016, 41, 1138–1141. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics, 4th ed.; Academic Press: New York, NY, USA, 2006; pp. 353–358. [Google Scholar]
- Ke, W.W.; Wang, X.J.; Tang, X. Stimulated Brillouin Scattering Model in Multi-Mode Fiber Lasers. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 0901610. [Google Scholar]
- Zhang, Z.Z.; Lu, Y.G.; Tanaka, Y.; Peng, J.Q.; Zhuang, Z.K. Discriminative sensing of temperature and acoustic impedance by using forward Brillouin scattering in large effective area fiber. Appl. Phys. Express 2021, 14, 042004. [Google Scholar] [CrossRef]
- Nishizawa, N.; Kume, S.; Mori, M.; Goto, T. Experimental analysis of guided acoustic wave Brillouin scattering in PANDA fibers. J. Opt. Soc. Am. B 1995, 12, 1651–1655. [Google Scholar] [CrossRef]
- Biryukov, A.S.; Sukharev, M.E.; Dianov, E.M. Excitation of sound waves upon propagation of laser pulses in optical fibres. Quantum Electron. 2002, 32, 765–775. [Google Scholar] [CrossRef]
- Kang, M.S.; Brenn, A.; Russell, P.S.J. All-Optical Control of Gigahertz Acoustic Resonances by Forward Stimulated Interpolarization Scattering in a Photonic Crystal Fiber. Phys. Rev. Lett. 2010, 105, 153901. [Google Scholar] [CrossRef] [PubMed]
- Picholle, E.; Picozzi, A. Guided-acoustic-wave resonances in the dynamics of a stimulated Brillouin fiber ring laser. Opt. Commun. 1997, 135, 327–330. [Google Scholar] [CrossRef]
- Liu, X.; Bao, X.Y. Brillouin Spectrum in LEAF and Simultaneous Temperature and Strain Measurement. J. Lightwave Technol. 2012, 30, 1052–1057. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Lu, Y.G.; Peng, J.Q.; Ji, Z.Y. Simultaneous measurement of temperature and acoustic impedance based on forward Brillouin scattering in LEAF. Opt. Lett. 2021, 46, 1776–1779. [Google Scholar] [CrossRef]
- Pang, C.; Hua, Z.J.; Zhou, D.W.; Zhang, H.Y.; Chen, L.; Bao, X.Y.; Dong, Y.K. Opto-mechanical time-domain analysis based on coherent forward stimulated Brillouin scattering probing. Optica 2020, 7, 176–183. [Google Scholar] [CrossRef]
- Bashan, G.; Diamandi, H.H.; London, Y.; Preter, E.; Zadok, A. Optomechanical time-domain reflectometry. Nat. Commun. 2020, 7, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.; Wada, Y.; Mizuno, Y.; Nakamura, K. Pilot demonstration of correlation-domain distributed temperature sensing using forward Brillouin scattering. Jpn. J. Appl. Phys. 2020, 59, 088002. [Google Scholar]
- Li, W.H.; Bao, X.Y.; Li, Y.; Chen, L. Differential pulse-width pair BOTDA for high spatial resolution sensing. Opt. Express 2008, 16, 21616–21624. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.A.; Floch, S.L.; Thevenaz, L. Bipolar optical pulse coding for performance enhancement in BOTDA sensors. Opt. Express 2013, 21, 16390–16397. [Google Scholar] [CrossRef] [Green Version]
- Saneyoshi, J.; Kikuchi, Y.; Nomoto, O. Handbook of Ultrasonic Technology; Cho-onpa Gijutsu Binran: Nikkan, Kogyo, 1978. [Google Scholar]
- Marsh, J.N.; Hall, C.S.; Wickline, S.A.; Lanza, G.M. Temperature dependence of acoustic impedance for specific fluorocarbon liquids. J. Acoust. Soc. Am. 2002, 112, 2858–2862. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, N.A.; Yuh, T.C.; Trevor, P.N. 150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification. J. Opt. Soc. Am. B 2005, 22, 1321–1324. [Google Scholar]
- Shibahara, K.; Lee, D.; Kobayashi, T.; Mizuno, T.; Takara, H.; Sano, A.; Kawakami, H.; Miyamoto, Y.; Ono, H.; Oguma, M.; et al. Dense SDM (12-Core ×3-Mode) transmission over 527 km with 33.2 ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization. J. Lightwave Technol. 2016, 34, 196–204. [Google Scholar] [CrossRef]
- Ryf, R.; Randel, S.; Gnauck, A.H.; Bolle, C.; Sierra, A.; Mumtaz, S.; Esmaeelpour, M.; Burrows, E.C.; Essiambre, R.J.; Winzer, P.J.; et al. Mode-Division Multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing. J. Lightwave Technol. 2012, 30, 521–531. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
α (dB/km) | 0.179 |
Diameter of cladding (μm) | 125.1 |
Diameter of coating (μm) | 245.3 |
LP01 mode Aeff @1550 nm (μm2) | 133 |
LP11 mode Aeff @1550 nm (μm2) | 147 |
LP01 mode D (ps·nm−1·km−1) | 22.8 |
LP11 mode D (ps·nm−1·km−1) | 21.2 |
(LP11–LP01) δneff@1550 nm | 2.6 × 10−3 |
(LP11–LP01) DMGD (ps·m−1) | 1.9 |
BL [dB, 10 turns @ R (Bending radius) = 5 mm] | ≤0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; You, G.; Qin, Y.; Peng, J.; Xie, S.; Jiang, X.; Wang, C.; Yu, R.; Shen, Y.; Xiao, L. Fabrication and Characterization of an Optimized Low-Loss Two-Mode Fiber for Optoacoustic Sensing. Micromachines 2022, 13, 1774. https://doi.org/10.3390/mi13101774
Zhang Z, You G, Qin Y, Peng J, Xie S, Jiang X, Wang C, Yu R, Shen Y, Xiao L. Fabrication and Characterization of an Optimized Low-Loss Two-Mode Fiber for Optoacoustic Sensing. Micromachines. 2022; 13(10):1774. https://doi.org/10.3390/mi13101774
Chicago/Turabian StyleZhang, Zelin, Guanglei You, Yu Qin, Jianqin Peng, Shuhong Xie, Xinli Jiang, Caoyuan Wang, Ruowei Yu, Yichun Shen, and Limin Xiao. 2022. "Fabrication and Characterization of an Optimized Low-Loss Two-Mode Fiber for Optoacoustic Sensing" Micromachines 13, no. 10: 1774. https://doi.org/10.3390/mi13101774
APA StyleZhang, Z., You, G., Qin, Y., Peng, J., Xie, S., Jiang, X., Wang, C., Yu, R., Shen, Y., & Xiao, L. (2022). Fabrication and Characterization of an Optimized Low-Loss Two-Mode Fiber for Optoacoustic Sensing. Micromachines, 13(10), 1774. https://doi.org/10.3390/mi13101774