Design of Improved Flow-Focusing Microchannel with Constricted Continuous Phase Inlet and Study of Fluid Flow Characteristics
Abstract
:1. Introduction
2. Model Description
2.1. Structural Design of Flow-Focusing Microchannels
2.2. Numerical Model
- Inlet: Both phases are uniform inlet, and the flow velocity of the continuous and dispersed phase inlets are set to 1 m/s and 0.2 m/s, respectively, to ensure that microbubbles can be generated in the dripping regime.
- Outlet: The ambient pressure is used as the outlet fluid’s reference pressure, equal to 0 Pa.
- Wall: The contact angle is set to 50°, and the channel wall is set to no-slip boundary condition.
2.3. Grid Independence and Model Validation
3. Research Methods
3.1. Design of Sampling Point
3.2. Surrogate Model
3.3. NSGA-II
3.4. TOPSIS
4. Results and Discussion
4.1. Surrogate Model Accuracy Analysis
4.2. Optimization Design Results
4.3. Performance Evaluation of Flow-Focusing Microchannels
4.3.1. Flow Regimes in Flow-Focusing Microchannels
4.3.2. Pressure Changes during Microbubble Formation
4.3.3. Microbubble Diameter and Generation Frequency
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
No. | Design Variables | Objective Functions | ||||
---|---|---|---|---|---|---|
1 | 1.2 | 2.2 | 11 | 9 | 1.8939 | 138.888 |
2 | 1.4 | 1.5 | 26 | 12 | 2.1013 | 112.994 |
3 | 0.9 | 2.6 | 23 | 12 | 1.7746 | 156.250 |
4 | 1.1 | 2.5 | 13 | 8 | 1.8194 | 149.253 |
5 | 0.9 | 2.7 | 10 | 6 | 1.7054 | 173.913 |
6 | 0.8 | 3.4 | 30 | 14 | 1.9273 | 134.228 |
7 | 1.4 | 2.8 | 24 | 10 | 2.0886 | 112.994 |
8 | 0.9 | 3.5 | 18 | 13 | 1.8610 | 143.884 |
9 | 1.0 | 3.0 | 20 | 14 | 1.8219 | 149.253 |
10 | 0.8 | 2.3 | 17 | 13 | 1.9165 | 136.986 |
11 | 1.2 | 2.0 | 16 | 10 | 1.9321 | 136.986 |
12 | 1.3 | 2.1 | 24 | 12 | 2.0200 | 124.223 |
13 | 1.4 | 3.3 | 23 | 8 | 2.0623 | 114.942 |
14 | 0.8 | 3.3 | 25 | 9 | 1.8178 | 149.253 |
15 | 1.0 | 2.5 | 14 | 14 | 1.7962 | 151.515 |
16 | 1.4 | 1.7 | 17 | 5 | 2.0995 | 116.279 |
17 | 0.6 | 2.2 | 28 | 5 | 1.8103 | 152.671 |
18 | 0.5 | 1.6 | 21 | 7 | 1.8769 | 140.845 |
19 | 1.2 | 2.4 | 29 | 15 | 1.9197 | 133.333 |
20 | 1.5 | 3.1 | 14 | 6 | 2.1888 | 103.626 |
21 | 1.1 | 2.7 | 22 | 9 | 1.8060 | 151.515 |
22 | 1.0 | 2.0 | 25 | 11 | 1.7564 | 158.730 |
23 | 1.2 | 1.8 | 15 | 12 | 1.9391 | 134.228 |
24 | 0.8 | 1.8 | 28 | 10 | 1.8421 | 147.058 |
25 | 1.5 | 3.2 | 27 | 15 | 2.2303 | 101.010 |
26 | 0.6 | 3.0 | 22 | 7 | 1.8623 | 144.927 |
27 | 0.7 | 2.6 | 19 | 8 | 1.8363 | 147.058 |
28 | 0.7 | 2.4 | 19 | 8 | 1.8535 | 144.927 |
29 | 1.3 | 2.9 | 21 | 11 | 2.0171 | 124.223 |
30 | 1.3 | 1.6 | 12 | 7 | 1.9769 | 128.205 |
31 | 0.7 | 3.2 | 15 | 10 | 1.9033 | 138.888 |
32 | 0.5 | 1.9 | 12 | 7 | 1.8604 | 140.845 |
33 | 1.3 | 2.9 | 20 | 6 | 1.9706 | 128.205 |
34 | 0.6 | 2.8 | 13 | 6 | 1.8337 | 147.058 |
35 | 0.9 | 3.4 | 18 | 13 | 1.8764 | 143.884 |
36 | 0.7 | 1.9 | 29 | 13 | 1.9444 | 131.578 |
37 | 1.1 | 2.1 | 26 | 11 | 1.8311 | 149.253 |
38 | 1.0 | 1.7 | 16 | 14 | 1.8022 | 150.375 |
39 | 0.6 | 3.1 | 27 | 11 | 1.9577 | 130.718 |
40 | 1.1 | 2.3 | 11 | 9 | 1.8286 | 149.253 |
References
- Keller, M.W.; Feinstein, S.B.; Watson, D.D. Successful left ventricular opacification following peripheral venous injection of sonicated contrast agent: An experimental evaluation. Am. Heart J. 1987, 114, 570–575. [Google Scholar] [CrossRef]
- Wei, K.; Jayaweera, A.R.; Firoozan, S.; Linka, A.; Skyba, D.M.; Kaul, S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 1998, 97, 473–483. [Google Scholar] [CrossRef]
- van Wamel, A.; Kooiman, K.; Harteveld, M.; Emmer, M.; ten Cate, F.J.; Versluis, M.; de Jong, N. Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation. J. Control. Release 2006, 112, 149–155. [Google Scholar] [CrossRef]
- Dixon, A.J.; Dhanaliwala, A.H.; Chen, J.L.; Hossack, J.A. Enhanced intracellular delivery of a model drug using microbubbles produced by a microfluidic device. Ultrasound Med. Biol. 2013, 39, 1267–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncanson, W.J.; Abbaspourrad, A.; Shum, H.C.; Kim, S.H.; Adams, L.L.; Weitz, D.A. Monodisperse gas-filled microparticles from reactions in double emulsions. Langmuir 2012, 28, 6742–6745. [Google Scholar] [CrossRef] [Green Version]
- Abbaspourrad, A.; Duncanson, W.J.; Lebedeva, N.; Kim, S.H.; Zhushma, A.P.; Datta, S.S.; Dayton, P.A.; Sheiko, S.S.; Rubinstein, M.; Weitz, D.A. Microfluidic fabrication of stable gas-filled microcapsules for acoustic contrast enhancement. Langmuir 2013, 29, 12352–12357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.-J.; Wang, W.; Xie, R.; Ju, X.-J.; Liu, L.; Gu, Y.-Y.; Chu, L.-Y. Microfluidic fabrication of monodisperse microcapsules for glucose-response at physiological temperature. Soft Matter 2013, 9, 4150–4159. [Google Scholar] [CrossRef]
- Cosgrove, D. Ultrasound contrast agents: An overview. Eur. J. Radiol. 2006, 60, 324–330. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Liang, H.D.; Mei, X.G.; Halliwell, M. Preparation, characterization and in vivo observation of phospholipid-based gas-filled microbubbles containing hirudin. Ultrasound Med. Biol. 2005, 31, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Soetanto, K.; Chan, M. Fundamental studies on contrast images from different-sized microbubbles: Analytical and experimental studies. Ultrasound Med. Biol. 2000, 26, 81–91. [Google Scholar] [CrossRef]
- Böhmer, M.R.; Schroeders, R.; Steenbakkers, J.A.M.; de Winter, S.H.P.M.; Duineveld, P.A.; Lub, J.; Nijssen, W.P.M.; Pikkemaat, J.A.; Stapert, H.R. Preparation of monodisperse polymer particles and capsules by ink-jet printing. Colloids Surf. A Physicochem. Eng. Asp. 2006, 289, 96–104. [Google Scholar] [CrossRef]
- Farook, U.; Stride, E.; Edirisinghe, M.J.; Moaleji, R. Microbubbling by co-axial electrohydrodynamic atomization. Med. Biol. Eng. Comput. 2007, 45, 781–789. [Google Scholar] [CrossRef]
- Stride, E.; Edirisinghe, M. Novel preparation techniques for controlling microbubble uniformity: A comparison. Med. Biol. Eng. Comput. 2009, 47, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Dhanaliwala, A.H.; Chen, J.L.; Hossack, J.A. Production rate and diameter analysis of spherical monodisperse microbubbles from two-dimensional, expanding-nozzle flow-focusing microfluidic devices. Biomicrofluidics 2013, 7, 14103. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Xu, Z.; Chen, S.; Zhang, Z.; Li, B.; Ge, L. An easily assembled double T-shape microfluidic devices for the preparation of submillimeter-sized polyacronitrile (PAN) microbubbles and polystyrene (PS) double emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2015, 468, 271–279. [Google Scholar] [CrossRef]
- Fu, T.; Ma, Y.; Funfschilling, D.; Zhu, C.; Li, H.Z. Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction. Chem. Eng. Sci. 2010, 65, 3739–3748. [Google Scholar] [CrossRef]
- Xu, J.H.; Li, S.W.; Wang, Y.J.; Luo, G.S. Controllable gas-liquid phase flow patterns and monodisperse microbubbles in a microfluidic T-junction device. Appl. Phys. Lett. 2006, 88, 133506. [Google Scholar] [CrossRef]
- Lorenceau, E.; Sang, Y.Y.C.; Höhler, R.; Cohen-Addad, S. A high rate flow-focusing foam generator. Phys. Fluids 2006, 18, 097103. [Google Scholar] [CrossRef] [Green Version]
- Dollet, B.; van Hoeve, W.; Raven, J.P.; Marmottant, P.; Versluis, M. Role of the channel geometry on the bubble pinch-off in flow-focusing devices. Phys. Rev. Lett. 2008, 100, 034504. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, N.; Poncin, S.; Midoux, N.; Li, H.Z. Bubble formation dynamics in various flow-focusing microdevices. Langmuir 2008, 24, 13904–13911. [Google Scholar] [CrossRef]
- Fu, T.; Ma, Y.; Funfschilling, D.; Li, H.Z. Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chem Eng Sci 2009, 64, 2392–2400. [Google Scholar] [CrossRef]
- Castro-Hernandez, E.; van Hoeve, W.; Lohse, D.; Gordillo, J.M. Microbubble generation in a co-flow device operated in a new regime. Lab Chip 2011, 11, 2023–2029. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Chen, Y.; Deng, J.; Luo, G. High-frequency formation of bubble with short length in a capillary embedded step T-junction microdevice. AIChE J. 2021, 67, e17376. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, P. Bubble formation in viscous fluids by a microfluidic flow-focusing junction: A computational study. Microfluid. Nanofluidics 2020, 24, 85. [Google Scholar] [CrossRef]
- Zadeh, S.A.; Radespiel, R. Numerical Study on Bubble Formation in a Microchannel Flow-Focusing Device Using the VOF Method. In Proceedings of the ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, Edmonton, AB, Canada, 19–22 June 2011; Volume 2, pp. 419–430. [Google Scholar] [CrossRef]
- Chekifi, T.; Boukraa, M.; Aissani, M. DNS using CLSVOF method of single micro-bubble breakup and dynamics in flow focusing. J. Visual.-Jpn. 2021, 24, 519–530. [Google Scholar] [CrossRef]
- Yu, W.; Liu, X.; Zhao, Y.; Chen, Y. Droplet generation hydrodynamics in the microfluidic cross-junction with different junction angles. Chem. Eng. Sci. 2019, 203, 259–284. [Google Scholar] [CrossRef]
- Fu, T.; Funfschilling, D.; Ma, Y.; Li, H.Z. Scaling the formation of slug bubbles in microfluidic flow-focusing devices. Microfluid. Nanofluidics 2010, 8, 467–475. [Google Scholar] [CrossRef]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics 1979, 21, 239–245. [Google Scholar] [CrossRef]
- Tian, W.; Jiang, C.; Ni, B.; Wu, Z.; Wang, Q.; Yang, L. Global sensitivity analysis and multi-objective optimization design of temperature field of sinter cooler based on energy value. Appl. Therm. Eng. 2018, 143, 759–766. [Google Scholar] [CrossRef]
- Peng, Y.; Parsian, A.; Khodadadi, H.; Akbari, M.; Ghani, K.; Goodarzi, M.; Bach, Q.-V. Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3—Cu nanoparticles dispersed in ethylene glycol. Phys. A Stat. Mech. Its Appl. 2020, 549, 124015. [Google Scholar] [CrossRef]
- Giwa, S.O.; Sharifpur, M.; Goodarzi, M.; Alsulami, H.; Meyer, J.P. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: Experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. J. Therm. Anal. Calorim. 2021, 143, 4149–4167. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Sayyaadi, H.; Mehrabipour, R. Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger. Energy 2012, 38, 362–375. [Google Scholar] [CrossRef]
- Bagherzadeh, S.A.; D’Orazio, A.; Karimipour, A.; Goodarzi, M.; Bach, Q.-V. A novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/EG nanofluid thermal conductivity: Outputs predicted analytically instead of numerically to more accuracy and less costs. Phys. A Stat. Mech. Its Appl. 2019, 521, 406–415. [Google Scholar] [CrossRef]
- Hauke, J.; Kossowski, T. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quageo 2011, 30, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Bagherzadeh, S.A.; D’Orazio, A.; Habibollahi, N.; Karimipour, A.; Goodarzi, M.; Bach, Q.-V. Present a new multi objective optimization statistical Pareto frontier method composed of artificial neural network and multi objective genetic algorithm to improve the pipe flow hydrodynamic and thermal properties such as pressure drop and heat transfer coefficient for non-Newtonian binary fluids. Phys. A Stat. Mech. Its Appl. 2019, 535, 122409. [Google Scholar] [CrossRef]
- Tucci, M.; Crisostomi, E.; Giunta, G.; Raugi, M. A Multi-Objective Method for Short-Term Load Forecasting in European Countries. IEEE Trans. Power Syst. 2015, 31, 3537–3547. [Google Scholar] [CrossRef] [Green Version]
- Bashir, S.; Rees, J.M.; Zimmerman, W.B. Investigation of pressure profile evolution during confined microdroplet formation using a two-phase level set method. Int. J. Multiph. Flow 2014, 60, 40–49. [Google Scholar] [CrossRef]
Limit | ||||
---|---|---|---|---|
Upper | 1.5 | 3.5 | 30 | 15 |
Lower | 0.5 | 1.5 | 10 | 5 |
Parameters | Values |
---|---|
Population size | 12 |
Number of generations | 100 |
Crossover probability | 0.9 |
Crossover distribution index | 10.0 |
Mutation distribution index | 20.0 |
Design | Diameter (μm) | Frequency (kHz) |
---|---|---|
Improved microchannel | 1.6949 | 175.438 |
Traditional microchannel | 2.8141 | 64.077 |
Relative error (%) | ||
Im (simulation and predictive) | 0.43 | 1.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Ding, W.; Fan, Y.; Wang, J.; Chen, J.; Wang, H. Design of Improved Flow-Focusing Microchannel with Constricted Continuous Phase Inlet and Study of Fluid Flow Characteristics. Micromachines 2022, 13, 1776. https://doi.org/10.3390/mi13101776
Wang Z, Ding W, Fan Y, Wang J, Chen J, Wang H. Design of Improved Flow-Focusing Microchannel with Constricted Continuous Phase Inlet and Study of Fluid Flow Characteristics. Micromachines. 2022; 13(10):1776. https://doi.org/10.3390/mi13101776
Chicago/Turabian StyleWang, Zhaohui, Weibing Ding, Yiwei Fan, Jian Wang, Jie Chen, and Hongxia Wang. 2022. "Design of Improved Flow-Focusing Microchannel with Constricted Continuous Phase Inlet and Study of Fluid Flow Characteristics" Micromachines 13, no. 10: 1776. https://doi.org/10.3390/mi13101776
APA StyleWang, Z., Ding, W., Fan, Y., Wang, J., Chen, J., & Wang, H. (2022). Design of Improved Flow-Focusing Microchannel with Constricted Continuous Phase Inlet and Study of Fluid Flow Characteristics. Micromachines, 13(10), 1776. https://doi.org/10.3390/mi13101776