Enhanced Ageing Performance of Sulfonic Acid-Grafted Pt/C Catalysts
Abstract
:1. Introduction
2. Methods and Models
2.1. Experiments
2.2. Computational Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tian, X.; Zhao, X.; Sun, Y.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E.; Lou, X.; et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856. [Google Scholar] [CrossRef]
- Fang, B.; Daniel, L.; Bonakdarpour, A.; Wilkinson, D.P. Upgrading the state-of-the-art electrocatalysts for PEM fuel cell applications. Adv. Mater. Interfaces 2022, 9, 2200349. [Google Scholar] [CrossRef]
- Kim, M.; Fang, B.; Chaudhari, N.; Song, M.; Bae, T.; Yu, J. A highly efficient synthesis approach of supported Pt-Ru catalyst for direct methanol fuel cell. Electrochim. Acta 2010, 55, 4543–4550. [Google Scholar] [CrossRef]
- Wang, Y.; Long, W.; Wang, L.; Yuan, R.; Ignaszak, A.; Fang, B.; Wilkinson, D. Unlocking the door to highly active ORR catalysts for PEMFC applications: Polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 2018, 11, 258–275. [Google Scholar] [CrossRef]
- Lu, L.; Zou, S.; Fang, B. The critical impacts of ligands on heterogeneous nanocatalysis: A review. ACS Catal. 2021, 11, 6020–6058. [Google Scholar] [CrossRef]
- Rao, P.; Luo, J.; Li, J.; Huang, W.; Sun, W.; Chen, Q.; Jia, C.; Liu, Z.; Deng, P.; Shen, Y.; et al. One-dimensional PtFe hollow nanochains for the efficient oxygen reduction reaction. Carbon Energy 2022, 1–8. [Google Scholar] [CrossRef]
- Fang, B.; Chaudhari, N.; Kim, M.; Kim, J.; Yu, J. Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel cell. J. Am. Chem. Soc. 2009, 131, 15330–15338. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, B.; Li, H.; Bi, X.; Wang, H. Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells. Prog. Mater. Sci. 2016, 82, 445–498. [Google Scholar] [CrossRef]
- Mukherjee, P.; Kakade, B.; Swami, A. Current trends in platinum-based ternary alloys as promising electrocatalysts for the oxygen reduction reaction: A mini review. Energy Fuels 2022, 36, 2306–2322. [Google Scholar] [CrossRef]
- Tian, J.; Cui, H.; Zhu, G.; Zhao, W.; Xu, J.; Shao, F.; He, J.; Huang, F. Hydrogen plasma reduced black TiO2-B nanowires for enhanced photoelectrochemical water-splitting. J. Power Sources 2016, 325, 697–705. [Google Scholar] [CrossRef]
- Xu, J.; Tian, Z.; Yin, G.; Lin, T.; Huang, F. Controllable reduced black titania with enhanced photoelectrochemical water splitting performance. Dalton Trans. 2017, 46, 1047–1051. [Google Scholar] [CrossRef]
- Rahman, M.; Inaba, K.; Batnyagt, G.; Saikawa, M.; Kato, Y.; Awata, R.; Delgertsetsega, B.; Kaneta, Y.; Higashi, K.; Uruga, T.; et al. Synthesis of catalysts with fine platinum particles supported by high-surface-area activated carbons and optimization of their catalytic activities for polymer electrolyte fuel cells. RSC Adv. 2021, 11, 20601–20611. [Google Scholar] [CrossRef]
- Li, Y.; Gui, F.; Wang, F.; Liu, J.; Zhu, H. Synthesis of modified, ordered mesoporous carbon-supported Pt3Cu catalyst for enhancing the oxygen reduction activity and durability. Int. J. Hydrogen Energy 2021, 26, 37802–37813. [Google Scholar] [CrossRef]
- Ren, X.; Lv, Q.; Liu, L.; Liu, B.; Wang, Y.; Liu, A.; Wu, G. Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustain. Energy Fuel 2020, 4, 15–30. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Z.; Cheng, T.; Fortunell, A.; Chen, C.; Yu, R.; Zhang, Q.; Gu, L.; Merinov, B.; Lin, Z.; et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419. [Google Scholar] [CrossRef] [Green Version]
- Peera, S.; Koutavarapu, R.; Akula, S.; Asokan, A.; Moni, P.; Selvaraj, M.; Balamurugan, J.; Kim, S.; Liu, C.; Sahu, A. Carbon nanofibers as potential catalyst support for fuel cell cathodes: A review. Energy Fuels 2021, 35, 11761–11799. [Google Scholar] [CrossRef]
- Liu, G.; Hou, F.; Pen, S.; Wang, X.; Fang, B. Process and challenges of stainless steel based bipolar plates for proton exchange membrane fuel cells. Int. J. Miner. Metall. Mater. 2022, 29, 1099–1119. [Google Scholar] [CrossRef]
- Watanabe, M.; Yano, H.; Uchida, H.; Tryk, D. Achievement of distinctively high durability at nanosized Pt catalysts supported on carbon black for fuel cell cathodes. J. Electroanal. Chem. 2018, 819, 359–364. [Google Scholar] [CrossRef]
- Fang, B.; Daniel, L.; Bonakdarpour, A.; Govindarajan, R.; Sharman, J.; Wilkinson, D. Dense Pt nanowire electrocatalysts for improved fuel cell performance using a graphitic carbon nitride-decorated hierarchical nanocarbon support. Small 2021, 17, 2102288. [Google Scholar] [CrossRef]
- Baruah, B.; Deb, P. Performance and application of carbon-based electrocatalysts in direct methanol fuel cell. Mater. Adv. 2021, 2, 5344–5364. [Google Scholar] [CrossRef]
- Huang, C.; Wan, X.; Wang, D.; Zhao, W.; Bu, K.; Xu, J.; Huang, X.; Bi, Q.; Huang, J.; Huang, F. Atomic pillar effect in PdxNbS2 to boost basal plane activity for stable hydrogen evolution. Chem. Mater. 2019, 31, 4726–4731. [Google Scholar] [CrossRef]
- Jeon, T.; Yu, S.; Yoo, S.; Park, H.; Kim, S. Electrochemical determination of the degree of atomic surface roughness in Pt–Ni alloy nanocatalysts for oxygen reduction reaction. Carbon Energy 2021, 3, 375–383. [Google Scholar] [CrossRef]
- Konwar, L.; Maki-Arvela, P.; Mikkola, J. SO3H-containing functional carbon materials: Synthesis, structure, and acid catalysis. Chem. Rev. 2019, 119, 11576–11630. [Google Scholar] [CrossRef]
- Hung, T.; Liao, S.; Li, C.; Chen-Yang, Y. Effect of sulfonated carbon nanofiber-supported Pt on performance of Nafion®-based self-humidifying composite membrane for proton exchange membrane fuel cell. J. Power Sources 2011, 196, 126–132. [Google Scholar] [CrossRef]
- Kim, H.; Lee, W.; Yoo, D. Functionalized carbon support with sulfonated polymer for direct methanol fuel cells. Electrochim. Acta 2007, 52, 2620–2624. [Google Scholar] [CrossRef]
- Du, C.; Zhao, T.; Liang, Z. Sulfonation of carbon-nanotube supported platinum catalysts for polymer electrolyte fuel cells. J. Power Sources 2008, 176, 9–15. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, X.; Liu, R.; Liang, Y.; Li, H. A simple approach towards sulfonated multi-walled carbon nanotubes supported by Pd catalysts for methanol electro-oxidation. J. Power Sources 2008, 185, 801–806. [Google Scholar] [CrossRef]
- Sun, Z.; Hang, X.; Tong, H.; Liang, Y.; Li, H. Sulfonation of ordered mesoporous carbon supported Pd catalysts for formic acid electrooxidation. J. Colloid Interface Sci. 2009, 337, 614–618. [Google Scholar] [CrossRef]
- Wang, H.; Yu, H.; Peng, F.; Lv, P. Methanol electrocatalytic oxidation on highly dispersed Pt/sulfonated-carbon nanotubes catalysts. Electrochem. Commun. 2006, 8, 499–504. [Google Scholar] [CrossRef]
- Saha, M.; Kundu, A. Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode. J. Power Sources 2010, 195, 6255–6261. [Google Scholar] [CrossRef]
- Weissmann, M.; Baranton, S.; Clacens, J.; Coutanceau, C. Modification of hydrophobic/hydrophilic properties of Vulcan XC72 carbon powder by grafting of trifluoromethylphenyl and phenylsulfonic acid groups. Carbon 2010, 48, 2755–2764. [Google Scholar] [CrossRef]
- Xia, Y.; Nguyen, T.; Fontana, S.; Desforges, A.; Maréché, J.; Bonnet, C.; Lapicque, F. Development of half-cells with sulfonated Pt/Vulcan catalyst for PEM fuel cells. J. Electroanal. Chem. 2014, 724, 62–70. [Google Scholar] [CrossRef]
- Kim, J.; Cheon, J.; Shin, T.; Park, J.; Joo, S. Effect of surface oxygen functionalization of carbon support on the activity and durability of Pt/C catalysts for the oxygen reduction reaction. Carbon 2016, 101, 449–457. [Google Scholar] [CrossRef]
- Garcia-Araez, N.; Climent, V.; Feliu, J. Analysis of temperature effects on hydrogen and OH adsorption on Pt(111), Pt(100) and Pt(110) by means of Gibbs thermodynamics. J. Electroanal. Chem. 2010, 649, 69–82. [Google Scholar] [CrossRef]
- Shi, Q.C.; Sun, R. Adsorption manners of hydrogen on Pt (100), (110) and (111) surfaces at high coverage. Comput. Theoret. Chem. 2017, 1106, 43–49. [Google Scholar] [CrossRef]
- Ungerer, M.; Van Sittert, C.; de Leeuw, N. Behavior of S, SO, and SO3 on Pt (001), (011), and (111) surfaces: A DFT study. J. Chem. Phys. 2021, 154, 194701. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Liu, P.; Liu, C. Reexamination of CO formation during formic acid decomposition on the Pt(111) surface in the gas phase. Chem. Phys. Lett. 2016, 658, 207–209. [Google Scholar] [CrossRef]
- Kim, O.; Cho, Y.; Chung, D.; Kim, M.; Yoo, J.; Park, J.; Choe, H.; Sung, Y. Facile and gram-scale synthesis of metal-free catalysts: Toward realistic applications for fuel cells. Sci. Rep. 2015, 5, 8376. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.; Wang, Z.; Gu, D.; Yin, G. Performance of Pt/C catalysts prepared by microwave-assisted polyol process for methanol electrooxidation. J. Power Sources 2010, 195, 1799–1804. [Google Scholar] [CrossRef]
- Kim, J.; Fang, B.; Song, M.; Yu, J. Topological transformation of thioether-bridged organosilicas into nanostructured functional materials. Chem. Mater. 2012, 24, 2256–2264. [Google Scholar] [CrossRef]
- Perego, A.; Avid, A.; Mamania, D.; Chen, Y.; Atanassov, P.; Yildirim, H.; Odgaard, M.; Iryna, V.; Zenyuk, I. Investigation of cathode catalyst layer interfaces evolution during accelerated stress tests for polymer electrolyte fuel cells. Appl. Catal. B Environ. 2022, 301, 120810. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Luo, H.; Pan, C. Effect of mass transfer process on hydrogen adsorption on polycrystalline platinum electrode in sulfuric acid solution. Chin. Chem. Lett. 2019, 30, 1168–1172. [Google Scholar] [CrossRef]
Adsorption Site | Eads (eV) | d (Å) | |
---|---|---|---|
Pt(100) | T | −3.96 | 2.025 (O-Pt) |
B | −5.40 | 1.956 (O-Pt) | |
H | −5.56 | 1.990 (O-Pt) | |
Pt(110) | T | −3.59 | 2.160 (O-Pt) |
B | −3.44 | 2.078 (O-Pt) | |
H | −3.63 | 2.228 (O-Pt) | |
Pt(111) | T | −2.64 | 2.193 (O-Pt) |
B | −2.07 | 2.171 (O-Pt) | |
H | −4.67 | 2.075 (O-Pt) | |
F | −6.14 | 2.073 (O-Pt) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Lei, H.; Sun, C.; Wen, X.; Wang, Z.; Hu, G.; Fang, B. Enhanced Ageing Performance of Sulfonic Acid-Grafted Pt/C Catalysts. Micromachines 2022, 13, 1825. https://doi.org/10.3390/mi13111825
Xia Y, Lei H, Sun C, Wen X, Wang Z, Hu G, Fang B. Enhanced Ageing Performance of Sulfonic Acid-Grafted Pt/C Catalysts. Micromachines. 2022; 13(11):1825. https://doi.org/10.3390/mi13111825
Chicago/Turabian StyleXia, Yuzhen, Hangwei Lei, Chuanfu Sun, Xiaohao Wen, Zichen Wang, Guilin Hu, and Baizeng Fang. 2022. "Enhanced Ageing Performance of Sulfonic Acid-Grafted Pt/C Catalysts" Micromachines 13, no. 11: 1825. https://doi.org/10.3390/mi13111825
APA StyleXia, Y., Lei, H., Sun, C., Wen, X., Wang, Z., Hu, G., & Fang, B. (2022). Enhanced Ageing Performance of Sulfonic Acid-Grafted Pt/C Catalysts. Micromachines, 13(11), 1825. https://doi.org/10.3390/mi13111825