Parameters and Measurement Techniques of Reconfigurable Intelligent Surfaces
Abstract
:1. Introduction
2. Design of Unit-Cells
3. Radiation Performance Test for 10×10 Unit Cells
4. Measurement Technique of Our Proposed RIS
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- David, K.; Berndt, H. 6G vision and requirements: Is there any need for beyond 5G? IEEE Veh. Technol. Mag. 2018, 13, 72–80. [Google Scholar] [CrossRef]
- Chen, S.; Liang, Y.C.; Sun, S.; Kang, S.; Cheng, W.; Peng, M. Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wirel. Commun. 2020, 27, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Li, G.Y.; Swindlehurst, A.L.; Ashikhmin, A.; Zhang, R. An overview of massive MIMO: Benefits and challenges. IEEE J. Sel. Top. Signal Process. 2014, 8, 742–758. [Google Scholar] [CrossRef]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, P.; Saraswat, D.; Dave, A.; Acharya, M.; Tanwar, S.; Sharma, G.; Davidson, I.E. Coalition of 6G and blockchain in AR/VR space: Challenges and future directions. IEEE Access 2021, 9, 168455–168484. [Google Scholar] [CrossRef]
- Fantacci, R.; Picano, B. Edge-Based Virtual Reality over 6G Terahertz Channels. IEEE Netw. 2021, 35, 28–33. [Google Scholar] [CrossRef]
- Rana, B.; Shim, J.Y.; Chung, J.Y. An implantable antenna with broadside radiation for a brain—Machine interface. IEEE Sens. J. 2019, 19, 9200–9205. [Google Scholar] [CrossRef]
- Xiong, K.; Leng, S.; Chen, X.; Huang, C.; Yuen, C.; Guan, Y.L. Communication and computing resource optimization for connected autonomous driving. IEEE Trans. Veh. Technol. 2020, 11, 12652–12663. [Google Scholar] [CrossRef]
- Bajracharya, R.; Shrestha, R.; Kim, S.; Jung, H. 6G NR-U Based Wireless Infrastructure UAV: Standardization, Opportunities, Challenges and Future Scopes. IEEE Access 2022, 10, 30536–30555. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Kak, A.; Nie, S. 6G and beyond: The future of wireless communications systems. IEEE Access 2020, 21, 133995–134030. [Google Scholar] [CrossRef]
- Gong, S.; Lu, X.; Hoang, D.T.; Niyato, D.; Shu, L.; Kim, D.I.; Liang, Y.C. Toward smart wireless communications via intelligent reflecting surfaces: A contemporary survey. IEEE Commun. Surv. Tutor. 2020, 22, 2283–2314. [Google Scholar] [CrossRef]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.S.; Yuen, C.; De Rosny, J.; Tretyakov, S. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2019, 58, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Holloway, C.L.; Love, D.C.; Kuester, E.F.; Gordon, J.A.; Hill, D.A. Use of generalized sheet transition conditions to model guided waves on metasurfaces/metafilms. IEEE Trans. Antennas Propag. 2012, 60, 5173–5186. [Google Scholar] [CrossRef]
- Smy, T.J.; Rahmeier, J.G.; Dugan, J.; Gupta, S. Part II-Spatially Dispersive Metasurfaces: IE-GSTC-SD Field Solver with Extended GSTCs. IEEE Trans. Antennas Propag. 2022. [Google Scholar] [CrossRef]
- Fleury, R.; Monticone, F.; Alù, A. Invisibility and cloaking: Origins, present, and future perspectives. Phys. Rev. Appl. 2015, 4, 037001. [Google Scholar] [CrossRef] [Green Version]
- Turpin, J.P.; Bossard, J.A.; Morgan, K.L.; Werner, D.H.; Werner, P.L. Reconfigurable and tunable metamaterials: A review of the theory and applications. Int. J. Antennas Propag. 2014, 2014, 429837. [Google Scholar] [CrossRef] [Green Version]
- Smy, T.J.; Gupta, S. Surface susceptibility synthesis of metasurface skins/holograms for electromagnetic camouflage/illusions. IEEE Access 2020, 18, 226866–226886. [Google Scholar] [CrossRef]
- Smy, T.J.; Stewart, S.A.; Gupta, S. Surface susceptibility synthesis of metasurface holograms for creating electromagnetic illusions. IEEE Access 2020, 18, 93408–93425. [Google Scholar] [CrossRef]
- Sugiura, S.; Kawai, Y.; Matsui, T.; Lee, T.; Iizuka, H. Joint beam and polarization forming of intelligent reflecting surfaces for wireless communications. IEEE Trans. Veh. Technol. 2021, 70, 1648. [Google Scholar] [CrossRef]
- Yurduseven, O.; Assimonis, S.D.; Matthaiou, M. Intelligent reflecting surfaces with spatial modulation: An electromagnetic perspective. IEEE Open J. Commun. Soc. 2020, 1, 1256. [Google Scholar] [CrossRef]
- Tuan, V.P.; Hong, I.-P. Secrecy performance analysis and optimization of intelligent reflecting surface-aided indoor wireless communications. IEEE Access 2020, 8, 109440. [Google Scholar] [CrossRef]
- Di, B.; Zhang, L.; Song, L.; Li, Y.; Han, Z.; Poor, H.V. Hybrid beamforming for reconfigurable intelligent surface based multi-user communications: Achievable rates with limited discrete phase shifts. IEEE J. Sel. Areas Commun. 2020, 8, 1809. [Google Scholar] [CrossRef]
- Araghi, A.; Khalily, M.; Safaei, M.; Bagheri, A.; Sing, V.; Wang, F.; Tafazolli, R. Reconfigurable intelligent surface (RIS) in the sub-6 GHz band: Design, implementation, and real-world demonstration. IEEE Access 2022, 10, 2646. [Google Scholar] [CrossRef]
- Pei, X.; Yin, H.; Tan, L.; Cao, L.; Li, Z.; Wang, K.; Zhang, K.; Bjornson, E. RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials. IEEE Trans. Commun. 2021, 69, 8627. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Wang, M.; Yang, X.; Tan, J.; Bi, S.; Xu, S.; Yang, F.; Chen, Z.; Di Renzo, M.; et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results. IEEE Access 2020, 8, 45913–45923. [Google Scholar] [CrossRef]
- Gros, J.B.; Popov, V.; Odit, M.A.; Lenets, V.; Lerosey, G. A reconfigurable intelligent surface at mmWave based on a binary phase tunable metasurface. IEEE Open J. Commun. Soc. 2021, 2, 1055–1064. [Google Scholar] [CrossRef]
- Ouyang, M.; Wang, Y.; Gao, F.; Zhang, S.; Li, P.; Ren, J. Computer vision-aided reconfigurable intelligent surface-based beam tracking: Prototyping and experimental Results. arXiv 2022, arXiv:2207.05032. [Google Scholar] [CrossRef]
- Trichopoulos, G.C.; Theofanopoulos, P.; Kashyap, B.; Shekhawat, A.; Modi, A.; Osman, T.; Kumar, S.; Sengar, A.; Chang, A.; Alkhateeb, A. Design and evaluation of reconfigurable intelligent surfaces in real-world environment. IEEE Open J. Commun. Soc. 2022, 3, 462–474. [Google Scholar] [CrossRef]
- Zeng, X.; Hu, Q.; Mao, C.; Yang, H.; Wu, Q.; Tang, J.; Zhao, X.L.; Zhang, X.Y. High-accuracy reconfigurable intelligent surface using independently controllable methods. In Proceedings of the 2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Guangzhou, China, 28–30 November 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Amri, M.M.; Tran, N.M.; Choi, K.W. Reconfigurable intelligent surface-aided wireless communications: Adaptive beamforming and experimental validations. IEEE Access 2021, 9, 147442–147457. [Google Scholar] [CrossRef]
- Tang, J.; Cui, M.; Xu, S.; Dai, L.; Yang, F.; Li, M. Transmissive RIS for 6G Communications: Design, Prototyping, and Experimental Demonstrations. arXiv 2022, arXiv:2206.15133. [Google Scholar] [CrossRef]
- Zhao, S.; Langwieser, R.; Mecklenbraeuker, C.F. Reconfigurable digital metasurface for 3-bit phase encoding. In Proceedings of the WSA 2021 25th International ITG Workshop on Smart Antennas, Riviera, France, 10–12 November 2021; pp. 1–6. [Google Scholar]
- Rains, J.; Tukmanov, A.; Cui, T.J.; Zhang, L.; Abbasi, Q.H.; Imran, M.A. High-resolution programmable scattering for wireless coverage enhancement: An indoor field trial campaign. arXiv 2021, arXiv:2112.11194. [Google Scholar] [CrossRef]
- Molero, C.; Palomares-Caballero, Á.; Alex-Amor, A.; Parellada-Serrano, I.; Gamiz, F.; Padilla, P.; Valenzuela-Valdés, J.F. Metamaterial-based reconfigurable intelligent surface: 3D meta-atoms controlled by graphene structures. IEEE Commun. Mag. 2021, 59, 42–48. [Google Scholar] [CrossRef]
- Alamzadeh, I.; Alexandropoulos, G.C.; Shlezinger, N.; Imani, M.F. A reconfigurable intelligent surface with integrated sensing capability. Sci. Rep. 2021, 11, 20737. [Google Scholar] [CrossRef]
- Rossanese, M.; Mursia, P.; Garcia-Saavedra, A.; Sciancalepore, V.; Asadi, A.; Costa-Perez, X. Designing, building, and characterizing RF switch-based reconfigurable intelligent surfaces. arXiv 2022, arXiv:2207.07121. [Google Scholar] [CrossRef]
- Matos, R.; Pala, N. VO2-based ultra-reconfigurable intelligent reflective surface for 5G applications. Sci. Rep. 2022, 12, 4497. [Google Scholar] [CrossRef]
- Fara, R.; Ratajczak, P.; Phan-Huy, D.T.; Ourir, A.; Di Renzo, M.; De Rosny, J. A prototype of reconfigurable intelligent surface with continuous control of the reflection phase. IEEE Wirel. Commun. 2022, 29, 70–77. [Google Scholar] [CrossRef]
Ref. | Nature of Unit Cell | Year | Tunning Method | Freq. | Comments |
---|---|---|---|---|---|
[25] | D-type patch | 2022 | Varactor diode | 3.5 GHz | Expensive to fabricate and need an expensive external control board |
[26] | Normal patch | 2021 | Varactor diode | 5.8 GHz | Expensive to fabricate and need an expensive external control board |
[27] | Patch | 2020 | PIN diode | 2.3 GHz, 28.5 GHz | Very complicated structure and need an external controller |
[28] | Patch | 2021 | PIN diode | 28.5 GHz | Very complicated structure and need an external controller |
[29] | Joined E-shaped | 2022 | PIN diode | 5.4 GHz | Need complicated external controller |
[30] | Normal patch with a parasitic patch | 2022 | PIN diode | 5.8 GHz | Need complicated external controller |
[31] | Patch with PIN Diodes | 2021 | PIN diode | - | Complicated unit cell and external controller |
[32] | Patch | 2021 | PIN diode | 5.8 GHz | Multilayer unit cell |
[33] | Transmissive type unit cell | 2022 | PIN diode | 27 GHz | Complicated Structure |
[34] | 3-bit Unit Cell | 2021 | Varactor diode | 5 GHz | Complicated unit cell and need an external controller |
[35] | Patch | 2021 | PIN diode | 3–4.5 GHz | Need external controller |
[36] | 3D graphene | 2021 | Graphene On/OFF | 28 GHz | Difficult to fabricate the 3D structure |
[37] | Patch | 2021 | Varactor | 18.6–19.2 GHz | Need an external controller and need lots of varactor diodes |
[38] | Patch | 2022 | RF switch | 5.3 GHz | Compilated RIS board |
[39] | Vanadium dioxide-based unit cell | 2022 | Vanadium dioxide | 5 GHz, 32 GHz | Multi-layer structure |
[40] | Patch separated by an annular slot | 2022 | Varactor diode | 5.15–5.75 GHz | Need external controller |
Our work | Circular patch and circular patch with a ring | - | Mechanical Rotation | 3.5 GHz | Single layer unit cell backed by copper plate, easy to fabricate, low cost, no external complicated controller |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, B.; Cho, S.-S.; Hong, I.-P. Parameters and Measurement Techniques of Reconfigurable Intelligent Surfaces. Micromachines 2022, 13, 1841. https://doi.org/10.3390/mi13111841
Rana B, Cho S-S, Hong I-P. Parameters and Measurement Techniques of Reconfigurable Intelligent Surfaces. Micromachines. 2022; 13(11):1841. https://doi.org/10.3390/mi13111841
Chicago/Turabian StyleRana, Biswarup, Sung-Sil Cho, and Ic-Pyo Hong. 2022. "Parameters and Measurement Techniques of Reconfigurable Intelligent Surfaces" Micromachines 13, no. 11: 1841. https://doi.org/10.3390/mi13111841
APA StyleRana, B., Cho, S. -S., & Hong, I. -P. (2022). Parameters and Measurement Techniques of Reconfigurable Intelligent Surfaces. Micromachines, 13(11), 1841. https://doi.org/10.3390/mi13111841