Localized Surface Hydrophilicity Tailoring of Polyimide Film for Flexible Electronics Manufacturing Using an Atmospheric Pressure Ar/H2O Microplasma Jet
Abstract
:1. Introduction
2. Experiment Details
2.1. Microplasma Jet Setup
2.2. Diagnostic Methods
3. Results and Discussion
3.1. Electrical Characteristics of μAPPJ
3.2. OES of μAPPJ
3.3. Hydrophilicity of PI Films Modified by μAPPJ
3.4. AFM Morphologies of PI Films
3.5. XPS Analysis of PI Films
3.6. Modification Mechanism of PI Film by Microplasma Jet
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Song, E.; Li, J.; Won, S.M.; Bai, W.; Rogers, J.A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 2020, 19, 590–603. [Google Scholar] [CrossRef]
- Wang, P.; Hu, M.; Wang, H.; Chen, Z.; Feng, Y.; Wang, J.; Ling, W.; Huang, Y. The evolution of flexible electronics: From nature, beyond nature, and to nature. Adv. Sci. 2020, 7, 2001116. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Mousavi, S.M.; Naderi, H.R.; Bahrani, S.; Arjmand, M.; Hagfeldt, A.; Chiang, W.H.; Ramakrishna, S. Reinforced polypyrrole with 2D graphene flakes decorated with interconnected nickel-tungsten metal oxide complex toward superiorly stable supercapacitor. Chem. Eng. J. 2021, 418, 129396. [Google Scholar] [CrossRef]
- Heng, W.; Solomon, S.; Gao, W. Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Adv. Mater. 2022, 34, 2107902. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Ouyang, B.; Guo, X.; Guo, Y.; Liu, Y. Advances in flexible organic field-effect transistors and their applications for flexible electronics. Npj Flex. Electron. 2022, 6, 1–19. [Google Scholar] [CrossRef]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Sun, G.; Zhou, Y.; Liu, G.; Wang, J.; Han, S. Progress in low dielectric polyimide film-A review. Prog. Org. Coat. 2022, 172, 107103. [Google Scholar] [CrossRef]
- Schander, A.; Gancz, J.M.; Tintelott, M.; Lang, W. Towards long-term stable polyimide-based flexible electrical insulation for chronically implanted neural electrodes. Micromachines 2021, 12, 1279. [Google Scholar] [CrossRef] [PubMed]
- Vomero, M.; Ciarpella, F.; Zucchini, E.; Kirsch, M.; Fadiga, L.; Stieglitz, T.; Asplund, M. On the longevity of flexible neural interfaces: Establishing biostability of polyimide-based intracortical implants. Biomaterials 2022, 281, 121372. [Google Scholar] [CrossRef]
- Bian, J.; Zhou, L.; Yang, B.; Yin, Z.; Huang, Y. Theoretical and experimental studies of laser lift-off of nonwrinkled ultrathin polyimide film for flexible electronics. Appl. Surf. Sci. 2020, 499, 143910. [Google Scholar] [CrossRef]
- Cen-Puc, M.; Schander, A.; Vargas Gleason, M.G.; Lang, W. An assessment of surface treatments for adhesion of polyimide thin films. Polymers 2021, 13, 1955. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Yu, D.M.; Ahn, J.H.; Choi, J.H.; Hong, Y.T. Surface modification of polyimide films by an ethylenediamine treatment for a flexible copper clad laminate. Macromol. Res. 2012, 20, 168–173. [Google Scholar] [CrossRef]
- Tsuda, Y.; Koga, T.; Shimogawa, T.; Shiki, R.; Sakata, D. Surface Wettability Controllable Polyimides Having Various Photoreactive Groups by Photo-irradiation. J. Photopolym. Sci. Technol. 2018, 31, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.; Chen, W.; Li, Z.; Xue, N.; Li, F.; Dai, X.; Guo, S.; Cui, H. Study on High Frequency Surface Discharge Characteristics of SiO2 Modified Polyimide Film. Polymers 2021, 13, 4387. [Google Scholar] [CrossRef]
- Miyauchi, K.; Yuasa, M. A study of adhesive improvement of a Cr-Ni alloy layer on a polyimide surface by low pressure gas plasma modification. Prog. Org. Coat. 2013, 76, 1536–1542. [Google Scholar] [CrossRef]
- Shao, T.; Zhang, C.; Long, K.; Zhang, D.; Wang, J.; Yan, P.; Zhou, Y. Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air. Appl. Surf. Sci. 2010, 256, 3888–3894. [Google Scholar] [CrossRef]
- Lin, Y.S.; Liu, H.M. Enhanced adhesion of plasma-sputtered copper films on polyimide substrates by oxygen glow discharge for microelectronics. Thin Solid Film. 2008, 516, 1773–1780. [Google Scholar] [CrossRef]
- Yue, Y.; Kondeti, V.S.K.; Bruggeman, P.J. Absolute atomic hydrogen density measurements in an atmospheric pressure plasma jet: Generation, transport and recombination from the active discharge region to the effluent. Plasma Sources Sci. Technol. 2020, 29, 04LT01. [Google Scholar] [CrossRef]
- Thiha, A.; Ibrahim, F.; Muniandy, S.; Madou, M.J. Microplasma direct writing for site-selective surface functionalization of carbon microelectrodes. Microsyst. Nanoeng. 2019, 5, 62. [Google Scholar] [CrossRef] [Green Version]
- Park, J.W.; Kang, B.H.; Kim, H.J. A review of low-temperature solution-processed metal oxide thin-film transistors for flexible electronics. Adv. Funct. Mater. 2020, 30, 1904632. [Google Scholar] [CrossRef]
- Sarani, A.; Nikiforov, A.Y.; Leys, C. Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures: Optical emission spectroscopy and temperature measurements. Phys. Plasmas 2010, 17, 063504. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Dai, Y.; Wen, L.; Wang, H.; Chu, J. Maskless surface modification of polyurethane films by an atmospheric pressure He/O2 plasma microjet for gelatin immobilization. Micromachines 2018, 9, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Lü, L.; Shi, L. Surface functionalization and shape tuning of carbon fiber monofilament via direct microplasma scanning for ultramicroelectrode application. Appl. Surf. Sci. 2020, 531, 147414. [Google Scholar] [CrossRef]
- Collette, S.; Dufour, T.; Reniers, F. Reactivity of water vapor in an atmospheric argon flowing post-discharge plasma torch. Plasma Sources Sci. Technol. 2016, 25, 025014. [Google Scholar] [CrossRef] [Green Version]
- Yoshiki, H.; Oki, A.; Ogawa, H.; Horiike, Y. Generation of a capacitively coupled microplasma and its application to the inner-wall modification of a poly (ethylene terephthalate) capillary. J. Vac. Sci. Technol. A 2002, 20, 24–29. [Google Scholar] [CrossRef]
- Zheng, P.; Liu, K.; Wang, J.; Dai, Y.; Yu, B.; Zhou, X.; Hao, H.; Luo, Y. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma. Appl. Surf. Sci. 2012, 259, 494–500. [Google Scholar] [CrossRef]
- Park, J.B.; Oh, J.S.; Gil, E.L.; Kyoung, S.J.; Lim, J.T.; Yeom, G.Y. Polyimide surface treatment by atmospheric pressure plasma for metal adhesion. J. Electrochem. Soc. 2010, 157, D614. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Fattah, E.; Alshaer, M. Polyimide Surface Modification Using He-H2O Atmospheric Pressure Plasma Jet-Discharge Power Effect. Coatings 2020, 10, 662. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, H.Y. Effect of atmospheric-pressure plasma on adhesion characteristics of polyimide film. J. Colloid Interf. Sci. 2005, 285, 267–272. [Google Scholar] [CrossRef]
- Kim, S.H.; Na, S.W.; Lee, N.E.; Nam, Y.W.; Kim, Y.H. Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma. Surf. Coat. Technol. 2005, 200, 2072–2079. [Google Scholar] [CrossRef]
- Park, W.J.; Yoon, S.G.; Jung, W.S.; Yoon, D.H. Effect of dielectric barrier discharge on surface modification characteristics of polyimide film. Surf. Coat. Technol. 2007, 201, 5017–5020. [Google Scholar] [CrossRef]
- Štěpánová, V.; Šrámková, P.; Sihelník, S.; Stupavská, M.; Jurmanová, J.; Kováčik, D. The effect of ambient air plasma generated by coplanar and volume dielectric barrier discharge on the surface characteristics of polyamide foils. Vacuum 2021, 183, 109887. [Google Scholar] [CrossRef]
- Stafford, C.M.; Guan, X.; Qi, Y.; Zhang, Y.; Liu, X. Tuning the surface functionality of polyamide films via termination reaction in molecular layer-by-layer deposition. J. Membr. Sci. 2022, 661, 120855. [Google Scholar] [CrossRef]
- Fang, Z.; Yang, J.; Liu, Y.; Shao, T.; Zhang, C. Surface treatment of polyethylene terephthalate to improving hydrophilicity using atmospheric pressure plasma jet. IEEE Trans. Plasma Sci. 2013, 41, 1627–1634. [Google Scholar] [CrossRef]
- Lei, H.; Qi, S.; Wu, D. Hierarchical multiscale analysis of polyimide films by molecular dynamics simulation: Investigation of thermo-mechanical properties. Polymer 2019, 179, 121645. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, B.; Wang, T.; Li, M.; Shi, L.; You, X.; Sun, F.; Luan, H. Localized Surface Hydrophilicity Tailoring of Polyimide Film for Flexible Electronics Manufacturing Using an Atmospheric Pressure Ar/H2O Microplasma Jet. Micromachines 2022, 13, 1853. https://doi.org/10.3390/mi13111853
Ji B, Wang T, Li M, Shi L, You X, Sun F, Luan H. Localized Surface Hydrophilicity Tailoring of Polyimide Film for Flexible Electronics Manufacturing Using an Atmospheric Pressure Ar/H2O Microplasma Jet. Micromachines. 2022; 13(11):1853. https://doi.org/10.3390/mi13111853
Chicago/Turabian StyleJi, Bowen, Tao Wang, Meng Li, Liping Shi, Xiaoli You, Fanqi Sun, and Haiwen Luan. 2022. "Localized Surface Hydrophilicity Tailoring of Polyimide Film for Flexible Electronics Manufacturing Using an Atmospheric Pressure Ar/H2O Microplasma Jet" Micromachines 13, no. 11: 1853. https://doi.org/10.3390/mi13111853
APA StyleJi, B., Wang, T., Li, M., Shi, L., You, X., Sun, F., & Luan, H. (2022). Localized Surface Hydrophilicity Tailoring of Polyimide Film for Flexible Electronics Manufacturing Using an Atmospheric Pressure Ar/H2O Microplasma Jet. Micromachines, 13(11), 1853. https://doi.org/10.3390/mi13111853