Crystal Growth and Thermal Properties of Quasi-One-Dimensional van der Waals Material ZrSe3
Abstract
:1. Introduction
2. Experimental Methods
2.1. Material Synthesis
2.2. Material Characterization
3. Results and Discussion
3.1. Phase and Microstructures
3.2. Optical and Thermal Properties
3.3. Thermal Transport Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balandin, A.A.; Kargar, F.; Salguero, T.T.; Lake, R.K. One-dimensional van der Waals quantum materials. Mater. Today 2022, 55, 74–91. [Google Scholar] [CrossRef]
- Island, J.O.; Molina-Mendoza, A.J.; Barawi, M.; Biele, R.; Flores, E.; Clamagirand, J.M.; Ares, J.R.; Sanchez, C.; van der Zant, H.S.J.; D’Agosta, R.; et al. Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides. 2D Mater. 2017, 4, 022003. [Google Scholar] [CrossRef] [Green Version]
- Tsutsumi, K.; Takagaki, T.; Yamamoto, M.; Shiozaki, Y.; Ido, M.; Sambongi, T.; Yamaya, K.; Abe, Y. Direct Electron-Diffraction Evidence of Charge-Density-Wave Formation in NbSe3. Phys. Rev. Lett. 1977, 39, 1675. [Google Scholar] [CrossRef] [Green Version]
- Hodeau, J.L.; Marezio, M.; Roucau, C.; Ayroles, R.; Meerschaut, A.; Rouxel, J.; Monceau, P. Charge-density waves in NbSe3 at 145K: Crystal structures, X-ray and electron diffraction studies. J. Phys. C Solid State Phys. 1978, 11, 4117–4134. [Google Scholar] [CrossRef]
- Gorlova, I.G.; Pokrovskii, V.Y. Collective conduction mechanism in a quasi-one-dimensional TiS3 compound. Jetp. Lett. 2009, 90, 295–298. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, E.Z.; Yuan, X.; Wang, W.Y.; Liu, Y.W.; Zhang, C.; Ling, J.W.; Liu, S.S.; Xiu, F.X. Tunable charge density wave in TiS3 nanoribbons. Chin. Phys. B 2017, 26, 10. [Google Scholar] [CrossRef]
- Denholme, S.J.; Yukawa, A.; Tsumura, K.; Nagao, M.; Tamura, R.; Watauchi, S.; Tanaka, I.; Takayanagi, H.; Miyakawa, N. Coexistence of superconductivity and charge-density wave in the quasi-one-dimensional material HfTe3. Sci. Rep. 2017, 7, 45217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.W.; Zheng, F.P.; Ren, X.; Feng, J.; Li, Y. Charge density waves and phonon-electron coupling in ZrTe3. Phys. Rev. B 2015, 91, 10. [Google Scholar] [CrossRef] [Green Version]
- Felser, C.; Finckh, E.W.; Kleinke, H.; Rocker, F.; Tremel, W. Electronic properties of ZrTe3. J. Mater. Chem. 1998, 8, 1787–1798. [Google Scholar] [CrossRef]
- Hoesch, M.; Bosak, A.; Chernyshov, D.; Berger, H.; Krisch, M. Giant Kohn anomaly and the phase transition in charge density wave ZrTe3. Phys. Rev. Lett. 2009, 102, 086402. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, C.; Liu, Z.Y.; Deng, H.; Zhou, X.B.; Li, Y.; Sun, Y.; Huang, X.; Li, S.; Du, X.; et al. Thermal Dynamics of Charge Density Wave Pinning in ZrTe3. Phys. Rev. Lett. 2021, 126, 256401. [Google Scholar] [CrossRef] [PubMed]
- Monceau, P.; Peyrard, J.; Richard, J.; Molinie, P. Superconductivity of Linear Trichalcogenide NbSe3 under Pressure. Phys. Rev. Lett. 1977, 39, 161–164. [Google Scholar] [CrossRef]
- Yue, B.; Zhong, W.; Deng, W.; Wen, T.; Wang, Y.; Yin, Y.; Shan, P.; Yu, X.; Hong, F. Insulator-to-superconductor transition in quasi-one-dimensional HfS3 under pressure. arXiv 2021, arXiv:2111.02060. [Google Scholar]
- Mayorga-Martinez, C.C.; Sofer, Z.; Luxa, J.; Huber, S.; Sedmidubsky, D.; Brazda, P.; Palatinus, L.; Mikulics, M.; Lazar, P.; Medlin, R.; et al. TaS3 Nanofibers: Layered Trichalcogenide for High-Performance Electronic and Sensing Devices. ACS Nano 2018, 12, 464–473. [Google Scholar] [CrossRef]
- Xiong, W.W.; Chen, J.Q.; Wu, X.C.; Zhu, J.J. Individual HfS3 nanobelt for field-effect transistor and high performance visible-light detector. J. Mater. Chem. C 2014, 2, 7392–7395. [Google Scholar] [CrossRef]
- Dai, J.; Li, M.; Zeng, X.C. Group IVB transition metal trichalcogenides: A new class of 2D layered materials beyond graphene. Wiley Interdiscip. Rev.-Comput. Mol. Sci. 2016, 6, 211–222. [Google Scholar] [CrossRef]
- Dowben, P.A.; Binek, C.; Zhang, K.; Wang, L.; Mei, W.-N.; Bird, J.P.; Singisetti, U.; Hong, X.; Wang, K.L.; Nikonov, D. Towards a strong spin–orbit coupling magnetoelectric transistor. IEEE J. Explor. Solid-State Comput. Devices Circuits 2018, 4, 1–9. [Google Scholar] [CrossRef]
- Island, J.O.; Biele, R.; Barawi, M.; Clamagirand, J.M.; Ares, J.R.; Sanchez, C.; van der Zant, H.S.; Ferrer, I.J.; D’Agosta, R.; Castellanos-Gomez, A. Titanium trisulfide (TiS3): A 2D semiconductor with quasi-1D optical and electronic properties. Sci. Rep. 2016, 6, 22214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Jiang, C.Z.; Li, W.Q.; Xiao, X.H. Anisotropic Low-Dimensional Materials for Polarization-Sensitive Photodetectors: From Materials to Devices. Adv. Opt. Mater. 2022, 10, 2102436. [Google Scholar] [CrossRef]
- Biele, R.; D’Agosta, R. Transport coefficients of layered TiS3. Phys. Rev. Mater. 2022, 6, 8. [Google Scholar] [CrossRef]
- Sakuma, T.; Nishino, S.; Miyata, M.; Koyano, M. Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3. J. Electron. Mater. 2018, 47, 3177–3183. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Wen, Y.; Shi, L.; Chen, R.; Liu, H.; Shan, B. Titanium Trisulfide Monolayer as a Potential Thermoelectric Material: A First-Principles-Based Boltzmann Transport Study. ACS Appl. Mater. Interfaces 2017, 9, 2509–2515. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yu, X.; Wu, K.; Gao, Y.; Tongay, S.; Javey, A.; Chen, L.; Hong, J.; Wu, J. Extreme In-Plane Thermal Conductivity Anisotropy in Titanium Trisulfide Caused by Heat-Carrying Optical Phonons. Nano Lett. 2020, 20, 5221–5227. [Google Scholar] [CrossRef] [PubMed]
- Debnath, T.; Debnath, B.; Lake, R.K. Thermal conductivity of the quasi-one-dimensional materials TaSe3 and ZrTe3. Phys. Rev. Mater. 2021, 5, 034010. [Google Scholar] [CrossRef]
- Yang, L.; Tao, Y.; Zhu, Y.; Akter, M.; Wang, K.; Pan, Z.; Zhao, Y.; Zhang, Q.; Xu, Y.Q.; Chen, R.; et al. Observation of superdiffusive phonon transport in aligned atomic chains. Nat. Nanotechnol. 2021, 16, 764–768. [Google Scholar] [CrossRef]
- Kurita, S.; Tanaka, M.; Lévy, F. Optical spectra near the band edge of ZrS3 and ZrSe3. Phys. Rev. B 1993, 48, 1356. [Google Scholar] [CrossRef]
- Patel, K.; Prajapati, J.; Vaidya, R.; Patel, S.G. Optical and electrical properties of ZrSe3 single crystals grown by chemical vapour transport technique. Bull. Mater. Sci. 2005, 28, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Osada, K.; Bae, S.; Tanaka, M.; Raebiger, H.; Shudo, K.; Suzuki, T. Phonon Properties of Few-Layer Crystals of Quasi-One-Dimensional ZrS3 and ZrSe3. J. Phys. Chem. C 2016, 120, 4653–4659. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, T.; Xin, K.; Yang, J.; Liu, Y.; Zhao, Z.; Liu, J.; Wei, Z. Polarization sensitive photodetector based on quasi-1D ZrSe3. J. Semicond. 2022, 43, 102001. [Google Scholar] [CrossRef]
- Li, H.; Sanchez-Santolino, G.; Puebla, S.; Frisenda, R.; Al-Enizi, A.M.; Nafady, A.; D’Agosta, R.; Castellanos-Gomez, A. Strongly Anisotropic Strain-Tunability of Excitons in Exfoliated ZrSe3. Adv. Mater. 2022, 34, 2103571. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Chen, Q.; Wu, H.J.; Liang, J.; Tian, M.M.; Jiang, W.; Wang, J.C.; Li, R.X.; Li, S.K.; Huang, Z.C.; et al. Large spin hall conductivity in low-symmetry semiconductor ZrSe3. J. Alloys Compd. 2022, 918, 165579. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, H.; Fan, D.; Cao, G.; Sheng, C. High Thermoelectric Performance Originating from the Grooved Bands in the ZrSe3 Monolayer. ACS Appl. Mater. Interfaces 2018, 10, 37031–37037. [Google Scholar] [CrossRef] [Green Version]
- Furuseth, S.; Brattås, L.; Kjekshus, A.; Andresen, A.F.; Fischer, P. On the Crystal Structures of TiS3, ZrS3, ZrSe3, ZrTe3, HfS3, and HfSe3. Acta Chem. Scand. 1975, 29a, 623–631. [Google Scholar] [CrossRef] [Green Version]
- Barani, Z.; Kargar, F.; Ghafouri, Y.; Ghosh, S.; Godziszewski, K.; Baraghani, S.; Yashchyshyn, Y.; Cywiński, G.; Rumyantsev, S.; Salguero, T.T. Electrically Insulating Flexible Films with Quasi-1D Van Der Waals Fillers as Efficient Electromagnetic Shields in the GHz and Sub-THz Frequency Bands. Adv. Mater. 2021, 33, 2007286. [Google Scholar] [CrossRef] [PubMed]
- Shahi, P.; Singh, D.J.; Sun, J.P.; Zhao, L.X.; Chen, G.F.; Lv, Y.Y.; Li, J.; Yan, J.Q.; Mandrus, D.G.; Cheng, J.G. Bipolar Conduction as the Possible Origin of the Electronic Transition in Pentatellurides: Metallic vs Semiconducting Behavior. Phys. Rev. X 2018, 8, 021055. [Google Scholar] [CrossRef] [Green Version]
- Mortazavi, B.; Shojaei, F.; Yagmurcukardes, M.; Makaremi, M.; Zhuang, X.Y. A Theoretical Investigation on the Physical Properties of Zirconium Trichalcogenides, ZrS3, ZrSe3 and ZrTe3 Monolayers. Energies 2022, 15, 5479. [Google Scholar] [CrossRef]
- Petit, A.; Dulong, P. Study on the measurement of specific heat of solids. Ann. Chim. Phys. 1819, 10, 395. [Google Scholar]
- Debye, P. Zur Theorie der spezifischen Wärmen. Ann. Der. Phys. 1912, 344, 789–839. [Google Scholar] [CrossRef] [Green Version]
- Provencher, R.; Ayache, C.; Jandl, S.; Jaygerin, J.P. Low-Temperature Specific-Heats of ZrSe3 and ZrS3. Solid State Commun. 1986, 59, 553–556. [Google Scholar] [CrossRef]
- Hooda, M.K.; Tripathi, T.S.; Yadav, C.S. Semiconducting nature and thermal transport studies of ZrTe3. J. Alloys Compd. 2019, 785, 603–609. [Google Scholar] [CrossRef] [Green Version]
- Cahill, D.G.; Watson, S.K.; Pohl, R.O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B Condens. Matter. 1992, 46, 6131–6140. [Google Scholar] [CrossRef] [PubMed]
- Nan, C.-W.; Birringer, R.; Clarke, D.R.; Gleiter, H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 1997, 81, 6692–6699. [Google Scholar] [CrossRef]
- Callaway, J. Model for Lattice Thermal Conductivity at Low Temperatures. Phys. Rev. 1959, 113, 1046–1051. [Google Scholar] [CrossRef]
- Che, H.L.; Shi, J.; Wu, J.C.; Rao, X.; Liu, X.G.; Zhao, X.; Sun, X.F. Thermal conductivity of Ca3Co2O6 single crystals. AIP Adv. 2018, 8, 055811. [Google Scholar] [CrossRef]
- Cheng, J.G.; Zhou, J.S.; Goodenough, J.B. Thermal conductivity, electron transport, and magnetic properties of single-crystal Ca3Co2O6. Phys. Rev. B 2009, 79, 184414. [Google Scholar] [CrossRef]
- Chen, X.; Weathers, A.; Moore, A.; Zhou, J.S.; Shi, L. Thermoelectric Properties of Cold-Pressed Higher Manganese Silicides for Waste Heat Recovery. J. Electron. Mater. 2012, 41, 1564–1572. [Google Scholar] [CrossRef]
- Li, S.C.; Guo, S.C.; Xu, Y.M.; Zhou, J.S.; Chen, X. Role of Grain Size on Magnon and Phonon Thermal Transport in the Spin Ladder Compound Ca9La5Cu24O41. Acs Appl. Electron. Mater. 2022, 4, 787–794. [Google Scholar] [CrossRef]
- Chen, X.; Shi, L.; Zhou, J.; Goodenough, J.B. Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides. J. Alloys Compd. 2015, 641, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Girard, S.N.; Meng, F.; Lara-Curzio, E.; Jin, S.; Goodenough, J.B.; Zhou, J.; Shi, L. Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides. Adv. Energy Mater. 2014, 4, 1400452. [Google Scholar] [CrossRef]
Sample | ρ (g cm−3) | Cp (J g−1 K−1) | θD (K) | vs (m s−1) | κ (W m−1 K−1) | κmax (W m−1 K−1) |
---|---|---|---|---|---|---|
ZrSe3 | 4.27 | 0.311 (300 K) | 110 | 2122 | 5.4 ± 1.3 (300 K) | 10.4 ± 1.9 (40 K) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Guo, S.; Chen, X. Crystal Growth and Thermal Properties of Quasi-One-Dimensional van der Waals Material ZrSe3. Micromachines 2022, 13, 1994. https://doi.org/10.3390/mi13111994
Xu Y, Guo S, Chen X. Crystal Growth and Thermal Properties of Quasi-One-Dimensional van der Waals Material ZrSe3. Micromachines. 2022; 13(11):1994. https://doi.org/10.3390/mi13111994
Chicago/Turabian StyleXu, Youming, Shucheng Guo, and Xi Chen. 2022. "Crystal Growth and Thermal Properties of Quasi-One-Dimensional van der Waals Material ZrSe3" Micromachines 13, no. 11: 1994. https://doi.org/10.3390/mi13111994
APA StyleXu, Y., Guo, S., & Chen, X. (2022). Crystal Growth and Thermal Properties of Quasi-One-Dimensional van der Waals Material ZrSe3. Micromachines, 13(11), 1994. https://doi.org/10.3390/mi13111994