Novel Design Techniques for the Fermat Spiral in Antenna Arrays, for Maximum SLL Reduction
Abstract
:1. Introduction
2. Design Configurations for the Fermat Spiral Array
2.1. Raised Cosine Distribution
2.2. Optimization of the Amplitude Excitations for the Fermat Spiral Array
2.3. Optimization of the Angular Separations through the Fermat Spiral Array
3. Results and Discussion
3.1. Cases Using Uniform Amplitude Excitation: Golden Angle and Angular Separations Optimized
3.2. Cases Using Non-Uniform Amplitude Excitation: Raised Cosine and Amplitude Excitations Optimized
3.3. Analysis Considering Cophasal Excitation for Beam-Steering
3.4. Full-Wave Electromagnetic Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mar, J.; Liu, C.-C.; Basnet, M.B. Ship-borne phased array radar using GA based adaptive α-β-γ filter for beamforming compensation and air target tracking. Int. J. Antennas Propag. 2015, 2015, 563726. [Google Scholar] [CrossRef] [Green Version]
- Awan, W.A.; Soruri, M.; Alibakhshikenari, M.; Limiti, E. On-demand frequency switchable antenna array operating at 24.8 and 28 Ghz for 5G high gain sensors applications. Prog. Electromagn. Res. M 2022, 108, 163–173. [Google Scholar] [CrossRef]
- Han, G.; Du, B.; Wu, W.; Yang, B. A novel hybrid phased array antenna for satellite communication on-the-move in Ku-band. IEEE Trans. Antennas Propag. 2015, 63, 1375–1383. [Google Scholar] [CrossRef]
- Hussain, M.; Naqvi, S.I.; Awan, W.A.; Ellatif Ali, W.A.; Mousa Ali, E.; Khan, S.; Alibakhshikenari, M. Simple wideband extended aperture antenna-inspired circular patch for V-band communication systems. AEU Int. J. Electron. Commun. 2022, 144, 154061. [Google Scholar] [CrossRef]
- de Oliveira, M.T.; Miranda, R.M.; Costa, J.P.C.L.; de Almeida, A.L.F.; de Sousa, R.T., Jr. Low cost antenna array based drone tracking device. Wirel. Commun. Mob. Comput. 2019, 2019, 5437908. [Google Scholar] [CrossRef]
- Zahra, H.; Awan, W.A.; Hussain, N.; Abbas, S.M.; Mukhopadhyay, S. Helix inspired 28 GHz broadband antenna with end-fire radiation pattern. Comput. Mater. Contin. 2022, 70, 1935–1944. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Haji, I.A.; Islam, M.R.; Alam, A.H.M.Z.; Khalifa, O.O.; Khan, S.; Abdullah, K.A.; Yussuf, A.A. Design and optimization of linear array antenna based on the analysis of direction of arrival (DOA) estimation and beamforming algorithms. In Proceedings of the International Conference on Computer and Communication Engineering (ICCCE’10), Kuala Lumpur, Malaysia, 11–12 May 2010; pp. 1–4. [Google Scholar]
- Gao, X.; Liu, X. Design of Rectangular Antenna Array Structure for Massive MIMO. In Proceedings of the 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China, 23–25 October 2019; pp. 1–6. [Google Scholar]
- Ioannides, P.; Balanis, C.A. Uniform circular and rectangular arrays for adaptive beamforming applications. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 351–354. [Google Scholar] [CrossRef]
- Bray, M.G.; Werner, D.H.; Daniel, W.B.; David, W.M. Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning. IEEE Trans. Antennas Propag. 2002, 12, 1732–1742. [Google Scholar] [CrossRef]
- Azzam, D.M.; Malhat, H.A.; Zainud-Deen, S.H. Phased-only Pattern Synthesis for Sunflower and Conformal Arrays with Shaped Radiation Patterns. In Proceedings of the 35th National Radio Science Conference (NRSC 2018), Cairo, Egypt, 20–22 March 2018; pp. 30–37. [Google Scholar]
- Ibarra, M.; Reyna, A.; Panduro, M.A.; del Rio-Bocio, C. Design of aperiodic planar arrays for desirable isoflux radiation in GEO satellites. In Proceedings of the IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, 3–8 July 2011; pp. 3003–3006. [Google Scholar]
- El-Makadema, A.; Rashid, L.; Brown, A.K. Geometry design optimization of large-scale broadband antenna array systems. IEEE Trans. Antennas Propag. 2014, 62, 1673–1680. [Google Scholar] [CrossRef]
- Juárez, E.; Panduro, M.A.; Reyna, A.; Covarrubias, D.H.; Mendez, A.; Murillo, E. Design of concentric ring antenna arrays based on subarrays to simplify the feeding system. Symmetry 2020, 12, 970. [Google Scholar] [CrossRef]
- Dicandia, F.A.; Genovesi, S. Wide-Scan and Energy-Saving Phased Arrays by Exploiting Penrose Tiling Subarrays. IEEE Trans. Antennas Propag. 2022, 70, 7524–7537. [Google Scholar] [CrossRef]
- Rocca, P.; Mailloux, R.J.; Toso, G. GA-Based Optimization of Irregular Subarray Layouts for Wideband Phased Arrays Design. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 131–134. [Google Scholar] [CrossRef]
- Ramalli, A.; Boni, E.; Savoia, A.S.; Tortoli, P. Density-tapered spiral arrays for ultrasound 3-D imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Graullera, O.; Martín, C.J.; Godoy, G.; Ullate, L.G. 2D array design based on Fermat spiral for ultrasound imaging. Ultrasonics 2010, 50, 280–289. [Google Scholar] [CrossRef] [Green Version]
- Gabrielli, L.H.; Hernandez Figueroa, H.E. Aperiodic Antenna Array for Secondary Lobe Suppression. IEEE Photonics Technol. Lett. 2016, 28, 209–212. [Google Scholar] [CrossRef]
- Junker, G.P.; Kuo, S.S.; Chen, C.H. Genetic algorithm optimization of antenna arrays with variable interelement spacings. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Atlanta, GA, USA, 21–26 June 1998; pp. 50–53. [Google Scholar]
- Voguel, H. A better way to construct the sunflower head. Math. Biosci. 1979, 44, 179–189. [Google Scholar] [CrossRef]
- Sadoc, J.-F.; Rivier, N.; Charvolin, J. Phyllotaxis: A nonconventional crystalline solution to packing efficiency in situations with radial symmetry. Acta Crystallogr. Sect. A Found. Crystallogr. 2012, 68, 470–483. [Google Scholar] [CrossRef]
- Pita, J.L.; Aldaya, I.; Santana, O.J.S.; de Araujo, L.E.E.; Dainese, P.; Gabrielli, L.H. Side-lobe level reduction in bio-inspired optical phased-array antennas. Opt. Express 2017, 25, 30105–30114. [Google Scholar] [CrossRef]
- Malek, N.A.; Omran, K.O.; Abidin, Z.Z.; Mohamad, S.Y.; Abdul, R.A. Beam steering using the active element pattern of antenna array. TELKOMNIKA 2018, 16, 1542–1550. [Google Scholar] [CrossRef]
- Panduro, M.A.; Brizuela, C.A.; Balderas, L.I.; Acosta, D.A. A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays. Prog. Electromagn. Res. 2009, 13, 171–186. [Google Scholar] [CrossRef]
- Panduro, M.A.; Brizuela, C.A.; Garza, J.; Hinojosa, S.; Reyna, A. A comparison of NSGA-II, DEMO, and EM-MOPSO for the multi-objective design of concentric rings antenna arrays. J. Electromagn. Waves Appl. 2013, 27, 1100–1113. [Google Scholar] [CrossRef]
Design Case | Amplitude Excitation | SLL in dB for Each Cut of 𝝓 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
10° | 20° | 30° | 40° | 50° | 60° | 70° | 80° | 90° | ||
Golden angle [20] | Uniform | −13.57 | −13.52 | −15.00 | −16.67 | −16.37 | −15.34 | −14.75 | −14.06 | −13.27 |
Angle optimization | Uniform | −14.28 | −14.22 | −16.83 | −17.22 | −15.12 | −14.61 | −14.41 | −15.41 | −18.10 |
Raised cosine | Non-uniform | −18.88 | −19.18 | −20.71 | −22.06 | −18.85 | −18.70 | −18.10 | −16.73 | −15.41 |
Amplitude optimization | Non-uniform | −18.18 | −17.07 | −17.09 | −17.87 | −17.55 | −18.58 | −18.95 | −18.01 | −17.06 |
Design Case | Amplitude Excitation | SLL in dB for Each Cut of𝝓 | ||||||||
100° | 110° | 120° | 130° | 140° | 150° | 160° | 170° | 180° | ||
Golden angle [20] | Uniform | −13.41 | −14.74 | −15.79 | −15.67 | −16.01 | −14.84 | −14.86 | −15.52 | −14.84 |
Angle optimization | Uniform | −16.82 | −15.69 | −15.07 | −14.62 | −14.30 | −14.18 | −15.44 | −17.06 | −16.08 |
Raised cosine | Non-uniform | −15.02 | −15.66 | −16.30 | 16.81 | −16.83 | −16.50 | −17.36 | −18.87 | −19.30 |
Amplitude optimization | Non-uniform | −17.13 | −18.23 | −18.23 | −17.51 | −17.07 | −18.24 | −20.11 | −20.86 | −20.09 |
Array Type | SLL (dB) for Each Value of θ0 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1° | 2° | 3° | 4° | 5° | 6° | 7° | 8° | 9° | 10° | 11° | 12° | 13° | 14° | 15° | ||
Golden angle | −14.84 | −14.84 | −14.84 | −14.84 | −14.84 | −14.84 | −14.84 | −14.84 | −14.84 | −14.84 | −14.84 | −14.84 | −14.84 | −14.84 | −14.84 | |
Angle optimization | −16.08 | −16.08 | −16.08 | −16.08 | −15.12 | −14.08 | −13.18 | −12.39 | −11.71 | −11.11 | −10.59 | −10.13 | −9.74 | −9.4 | −9.13 | |
Raised cosine | −19.30 | −19.30 | −19.30 | −19.30 | −19.30 | −19.30 | −19.30 | −19.30 | −19.30 | −19.30 | −19.30 | −19.30 | −19.30 | −19.30 | −19.30 | |
Amp. optimization | −20.09 | −20.09 | −20.09 | −20.09 | −20.09 | −20.09 | −20.09 | −20.09 | −20.09 | −20.09 | −20.09 | −20.09 | −20.09 | −20.09 | −20.09 | |
Array Type | SLL (dB) for Each Value of θ0 | |||||||||||||||
16° | 17° | 18° | 19° | 20° | 21° | 22° | 23° | 24° | 25° | 26° | 27° | 28° | 29° | 30° | ||
Golden angle | −14.84 | −14.84 | −14.84 | −14.84 | −14.84 | −14.84 | −14.84 | −14.26 | −13.43 | −12.7 | −12.06 | −11.50 | −11.02 | −10.60 | −10.24 | |
Angle optimization | −8.91 | −8.73 | −8.60 | −8.51 | −8.46 | −8.45 | −8.48 | −8.45 | −8.45 | −8.45 | −8.45 | −8.45 | −8.45 | −8.45 | −8.45 | |
Raised cosine | −19.30 | −19.30 | −18.78 | −17.8 | −16.89 | −16.06 | −15.31 | −14.63 | −14.02 | −13.46 | −12.96 | −12.52 | −12.12 | −11.77 | −11.45 | |
Amp. optimization | −20.09 | −20.09 | −20.09 | −20.09 | −18.98 | −17.97 | −17.05 | −16.22 | −15.47 | −14.80 | −14.19 | −13.65 | −13.17 | −12.74 | −12.36 |
Design Case | Amplitude Excitation | SLL in dB for Each Cut of 𝝓 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
10° | 20° | 30° | 40° | 50° | 60° | 70° | 80° | 90° | ||
Golden angle | Uniform | −15.93 | −15.73 | −17.51 | −18.56 | −18.47 | −17.33 | −16.56 | −15.67 | −15.11 |
Angle optimization | Uniform | −16.51 | −16.07 | −18.89 | −20.07 | −19.38 | −19.98 | −20.01 | −20.76 | −18.65 |
Raised cosine | Non-uniform | −22.54 | −23.3 | −23.86 | −24.72 | −24.13 | −21.71 | −20.33 | −19.03 | −18.01 |
Amplitude optimization | Non-uniform | −21.50 | −20.75 | −19.98 | −19.92 | −21.04 | −22.02 | −21.21 | −20.29 | −19.69 |
Design Case | Amplitude Excitation | SLL in dB for Each Cut of𝝓 | ||||||||
100° | 110° | 120° | 130° | 140° | 150° | 160° | 170° | 180° | ||
Golden angle | Uniform | −15.61 | −17.18 | −17.77 | −19.26 | −17.90 | −16.46 | −16.42 | −17.49 | −17.22 |
Angle optimization | Uniform | −17.69 | −17.70 | −17.92 | −17.85 | −17.43 | −17.19 | −18.97 | −20.53 | −19.18 |
Raised cosine | Non-uniform | −17.79 | −18.38 | −19.33 | −20.12 | −19.79 | −19.52 | −20.35 | −22.27 | −22.50 |
Amplitude optimization | Non-uniform | −19.86 | −20.93 | −21.65 | −21.55 | −21.05 | −22.09 | −22.79 | −23.49 | −22.96 |
Proposed Technique | Gain (dB) |
---|---|
Golden angle | 16.57 |
Angle optimization | 16.54 |
Raised cosine | 16.07 |
Amplitude optimization | 15.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Encino, K.; Panduro, M.A.; Reyna, A.; Covarrubias, D.H. Novel Design Techniques for the Fermat Spiral in Antenna Arrays, for Maximum SLL Reduction. Micromachines 2022, 13, 2000. https://doi.org/10.3390/mi13112000
Encino K, Panduro MA, Reyna A, Covarrubias DH. Novel Design Techniques for the Fermat Spiral in Antenna Arrays, for Maximum SLL Reduction. Micromachines. 2022; 13(11):2000. https://doi.org/10.3390/mi13112000
Chicago/Turabian StyleEncino, Kleiverg, Marco A. Panduro, Alberto Reyna, and David H. Covarrubias. 2022. "Novel Design Techniques for the Fermat Spiral in Antenna Arrays, for Maximum SLL Reduction" Micromachines 13, no. 11: 2000. https://doi.org/10.3390/mi13112000
APA StyleEncino, K., Panduro, M. A., Reyna, A., & Covarrubias, D. H. (2022). Novel Design Techniques for the Fermat Spiral in Antenna Arrays, for Maximum SLL Reduction. Micromachines, 13(11), 2000. https://doi.org/10.3390/mi13112000