Contribution to the Improvement of the Correlation Filter Method for Modal Analysis with a Spatial Light Modulator
Abstract
:1. Introduction
2. The Correlation Filter Method for Modal Decomposition
2.1. Basics of the Correlation Filter Method
2.2. Double-Phase Method for Complex Amplitude Encoding
3. Modal Analysis Setup
4. Correlation-Filter Size adjustment
5. Double Phase Method Noise Term Analysis
6. Robustness Improvement in Relative Phase Measurements
7. Wavefront Reconstruction
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bachmann, M.; Besse, P.A.; Melchior, H. General self-imaging properties in N× N multimode interference couplers including phase relations. Appl. Opt. 1994, 33, 3905–3911. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M.; Venkataraman, N.; Gallagher, M.T.; Müller, D.; West, J.A.; Borrelli, N.F.; Allan, D.C.; Koch, K.W. Low-loss hollow-core silica/air photonic bandgap fibre. Nature 2003, 424, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, O.A.; Schulze, C.; Flamm, D.; Brüning, R.; Kaiser, T.; Schröter, S.; Duparré, M. Real-time determination of laser beam quality by modal decomposition. Opt. Express 2011, 19, 6741–6748. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Raghuraman, S.; Huang, X.; Zang, J.; Ho, D.; Zhou, Y.; Benudiz, Y.; Ami, U.B.; Ishaaya, A.A.; Yoo, S. 115 W fiber laser with an all solid-structure and a large-mode-area multicore fiber. Opt. Lett. 2018, 43, 3369–3372. [Google Scholar] [CrossRef]
- Li, L.; Schülzgen, A.; Chen, S.; Temyanko, V.L.; Moloney, J.V.; Peyghambarian, N. Phase locking and in-phase supermode selection in monolithic multicore fiber lasers. Opt. Lett. 2006, 31, 2577–2579. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Bai, N.; Zhao, N.; Xia, C. Space-division multiplexing: The next frontier in optical communication. Adv. Opt. Photonics 2014, 6, 413–487. [Google Scholar] [CrossRef] [Green Version]
- Saridis, G.M.; Alexandropoulos, D.; Zervas, G.; Simeonidou, D. Survey and evaluation of space division multiplexing: From technologies to optical networks. IEEE Commun. Surv. Tutor. 2015, 17, 2136–2156. [Google Scholar] [CrossRef] [Green Version]
- Trichili, A.; Park, K.H.; Zghal, M.; Ooi, B.S.; Alouini, M.S. Communicating using spatial mode multiplexing: Potentials, challenges, and perspectives. IEEE Commun. Surv. Tutor. 2019, 21, 3175–3203. [Google Scholar] [CrossRef] [Green Version]
- Napartovich, A.P.; Vysotsky, D.V. Theory of spatial mode competition in a fiber amplifier. Phys. Rev. A 2007, 76, 063801. [Google Scholar] [CrossRef] [Green Version]
- Jollivet, C.; Mafi, A.; Flamm, D.; Duparré, M.; Schuster, K.; Grimm, S.; Schülzgen, A. Mode-resolved gain analysis and lasing in multi-supermode multi-core fiber laser. Opt. Express 2014, 22, 30377–30386. [Google Scholar] [CrossRef]
- Eidam, T.; Wirth, C.; Jauregui, C.; Stutzki, F.; Jansen, F.; Otto, H.J.; Schmidt, O.; Schreiber, T.; Limpert, J.; Tünnermann, A. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Opt. Express 2011, 19, 13218–13224. [Google Scholar] [CrossRef] [PubMed]
- Stutzki, F.; Otto, H.J.; Jansen, F.; Gaida, C.; Jauregui, C.; Limpert, J.; Tünnermann, A. High-speed modal decomposition of mode instabilities in high-power fiber lasers. Opt. Lett. 2011, 36, 4572–4574. [Google Scholar] [CrossRef] [PubMed]
- Wright, L.G.; Sidorenko, P.; Pourbeyram, H.; Ziegler, Z.M.; Isichenko, A.; Malomed, B.A.; Menyuk, C.R.; Christodoulides, D.N.; Wise, F.W. Mechanisms of spatiotemporal mode-locking. Nat. Phys. 2020, 16, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Wright, L.G.; Christodoulides, D.N.; Wise, F.W. Spatiotemporal mode-locking in multimode fiber lasers. Science 2017, 358, 94–97. [Google Scholar] [CrossRef] [Green Version]
- Mohammadzahery, Z.; Jandaghi, M.; Aghayari, E.; Nabavi, H. Observation of spatial nonlinear self-cleaning in a few-mode step-index fiber for special distributions of initial excited modes. Sci. Rep. 2021, 11, 1–7. [Google Scholar] [CrossRef]
- Eckhardt, R.; Ulrich, R. Mode-beating spectroscopy in a few-mode optical guide. Appl. Phys. Lett. 1993, 63, 284–286. [Google Scholar] [CrossRef]
- Vallés, J.A.; Benedicto, D. Optimized active multicore fiber bending sensor. Opt. Mater. 2019, 87, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Andrews, D.L. Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Forbes, A. Laser Beam Propagation: Generation and Propagation of Customized Light; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Flamm, D.; Schulze, C.; Naidoo, D.; Schroter, S.; Forbes, A.; Duparré, M. All-Digital Holographic Tool for Mode Excitation and Analysis in Optical Fibers. J. Light. Technol. 2013, 31, 1023–1032. [Google Scholar] [CrossRef]
- Shapira, O.; Abouraddy, A.F.; Joannopoulos, J.D.; Fink, Y. Complete modal decomposition for optical waveguides. Phys. Rev. Lett. 2005, 94, 143902. [Google Scholar] [CrossRef]
- Gerchberg, R.W. A practical algorithm for the determination of plane from image and diffraction pictures. Optik 1972, 35, 237–246. [Google Scholar]
- Lü, H.; Zhou, P.; Wang, X.; Jiang, Z. Fast and accurate modal decomposition of multimode fiber based on stochastic parallel gradient descent algorithm. Appl. Opt. 2013, 52, 2905–2908. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Leng, J.; Zhou, P.; Chen, J. Multimode fiber modal decomposition based on hybrid genetic global optimization algorithm. Opt. Express 2017, 25, 19680–19690. [Google Scholar] [CrossRef] [PubMed]
- Brüning, R.; Gelszinnis, P.; Schulze, C.; Flamm, D.; Duparré, M. Comparative analysis of numerical methods for the mode analysis of laser beams. Appl. Opt. 2013, 52, 7769–7777. [Google Scholar] [CrossRef]
- An, Y.; Huang, L.; Li, J.; Leng, J.; Yang, L.; Zhou, P. Learning to decompose the modes in few-mode fibers with deep convolutional neural network. Opt. Express 2019, 27, 10127–10137. [Google Scholar] [CrossRef] [PubMed]
- Rothe, S.; Zhang, Q.; Koukourakis, N.; Czarske, J. Intensity-only mode decomposition on multimode fibers using a densely connected convolutional network. J. Light. Technol. 2021, 39, 1672–1679. [Google Scholar] [CrossRef]
- Zhang, Q.; Rothe, S.; Koukourakis, N.; Czarske, J. Learning the matrix of few-mode fibers for high-fidelity spatial mode transmission. APL Photonics 2022, 7, 066104. [Google Scholar] [CrossRef]
- Manuylovich, E.S.; Dvoyrin, V.V.; Turitsyn, S.K. Fast mode decomposition in few-mode fibers. Nat. Commun. 2022, 11, 1–9. [Google Scholar] [CrossRef]
- Andermahr, N.; Theeg, T.; Fallnich, C. Novel approach for polarization-sensitive measurements of transverse modes in few-mode optical fibers. Appl. Phys. B 2008, 91, 353–357. [Google Scholar] [CrossRef]
- Nicholson, J.W.; Yablon, A.D.; Ramachandran, S.; Ghalmi, S. Spatially and spectrally resolved imaging of modal content in large-mode-area fibers. Opt. Express 2008, 16, 7233–7243. [Google Scholar] [CrossRef]
- Schimpf, D.N.; Barankov, R.A.; Ramachandran, S. Cross-correlated (C2) imaging of fiber and waveguide modes. Opt. Express 2011, 19, 13008–13019. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Sych, Y.; Onishchukov, G.; Ramachandran, S.; Peschel, U.; Schmauss, B.; Leuchs, G. Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry. Appl. Phys. B 2009, 96, 345–353. [Google Scholar] [CrossRef]
- Daniel, J.M.O.; Chan, J.S.P.; Kim, J.W.; Sahu, J.K.; Ibsen, M.; Clarkson, W.A. Novel technique for mode selection in a multimode fiber laser. Opt. Express 2011, 19, 12434–12439. [Google Scholar] [CrossRef] [PubMed]
- Stutzki, F.; Jauregui, C.; Voigtlaender, C.; Thomas, J.; Nolte, S.; Limpert, J.; Tuennermann, A. Real-time monitoring of the modal content of monolithic large-mode-area fiber lasers. In Proceedings of the 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference, San Diego, CA, USA, 21–25 March 2010. [Google Scholar]
- Kaiser, T.; Flamm, D.; Schröter, S.; Duparré, M. Complete modal decomposition for optical fibers using CGH-based correlation filters. Opt. Express 2009, 17, 9347–9356. [Google Scholar] [CrossRef] [PubMed]
- Flamm, D.; Naidoo, D.; Schulze, C.; Forbes, A.; Duparré, M. Mode analysis with a spatial light modulator as a correlation filter. Opt. Lett. 2012, 37, 2478–2480. [Google Scholar] [CrossRef]
- Gervaziev, M.D.; Zhdanov, I.; Kharenko, D.S.; Gonta, V.A.; Volosi, V.M.; Podivilov, E.V.; Babin, S.A.; Wabnitz, S. Mode decomposition of multimode optical fiber beams by phase-only spatial light modulator. Laser Phys. Lett. 2020, 18, 15101. [Google Scholar] [CrossRef]
- Schulze, C.; Lorentz, A.; Flamm, D.; Hartung, A.; Schröter, S.; Bartelt, H.; Duparré, M. Mode resolved bend loss in few-mode optical fibers. Opt. Express 2013, 21, 3170–3181. [Google Scholar] [CrossRef]
- Schulze, C.; Naidoo, D.; Flamm, D.; Schmidt, O.A.; Forbes, A.; Duparré, M. Wavefront reconstruction by modal decomposition. Opt. Express 2012, 20, 19714–19725. [Google Scholar] [CrossRef] [Green Version]
- Pinnell, J.; Nape, I.; Sephton, B.; Cox, M.A.; Rodríguez-Fajardo, V.; Forbes, A. Modal analysis of structured light with spatial light modulators: A practical tutorial. JOSA A 2020, 37, C146–C160. [Google Scholar] [CrossRef]
- Lee, W.H. Sampled Fourier Transform Hologram Generated by Computer. Appl. Opt. 1970, 9, 639–643. [Google Scholar] [CrossRef]
- Burckhardt, C.B. A simplification of Lee’s method of generating holograms by computer. Appl. Opt. 1970, 9, 1949. [Google Scholar] [CrossRef]
- Hsueh, C.K.; Sawchuk, A.A. Computer-generated double-phase holograms. Appl. Opt. 1978, 17, 3874–3883. [Google Scholar] [CrossRef] [PubMed]
- Arrizón, D.; Sánchez-de-la-Llave, D. Double-phase holograms implemented with phase-only spatial light modulators: Performance evaluation and improvement. Appl. Opt. 2002, 41, 3436–3447. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Yero, O.; Mínguez-Vega, G.; Lancis, J. Encoding complex fields by using a phase-only optical element. Opt. Let. 2014, 39, 1740–1743. [Google Scholar] [CrossRef] [Green Version]
- Gloge, D. Weakly guiding fibers. Appl. Opt. 1971, 10, 2252–2258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, J.W. Introduction to Fourier Optics; McGraw-Hill: New York, USA, 1968. [Google Scholar]
- Holoeye, PLUTO. Available online: https://holoeye.com/spatial-light-modulators/slm-pluto-phase-only/ (accessed on 19 September 2022).
- Reichelt, S. Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators. Appl. Opt. 2013, 52, 2610–2618. [Google Scholar] [CrossRef] [PubMed]
- Schulze, C.; Ngcobo, S.; Duparré, M.; Forbes, A. Modal decomposition without a priori scale information. Opt. Express 2012, 20, 27866–27873. [Google Scholar] [CrossRef]
Mode | Weight (%) | Relative Error (%) |
---|---|---|
23.4 | 40 | |
14.1 | −15 | |
7.8 | −53 | |
17.2 | 3 | |
17.2 | 3 | |
20.3 | 22 |
Mode | Weight (%) | Phase (π rad) |
---|---|---|
33 | 0.0 | |
25 | 1.0 | |
10 | 1.9 | |
14 | 0.2 | |
3 | 0.9 | |
16 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedicto, D.; Collados, M.V.; Martín, J.C.; Atencia, J.; Mendoza-Yero, O.; Vallés, J.A. Contribution to the Improvement of the Correlation Filter Method for Modal Analysis with a Spatial Light Modulator. Micromachines 2022, 13, 2004. https://doi.org/10.3390/mi13112004
Benedicto D, Collados MV, Martín JC, Atencia J, Mendoza-Yero O, Vallés JA. Contribution to the Improvement of the Correlation Filter Method for Modal Analysis with a Spatial Light Modulator. Micromachines. 2022; 13(11):2004. https://doi.org/10.3390/mi13112004
Chicago/Turabian StyleBenedicto, David, María Victoria Collados, Juan C. Martín, Jesús Atencia, Omel Mendoza-Yero, and Juan A. Vallés. 2022. "Contribution to the Improvement of the Correlation Filter Method for Modal Analysis with a Spatial Light Modulator" Micromachines 13, no. 11: 2004. https://doi.org/10.3390/mi13112004
APA StyleBenedicto, D., Collados, M. V., Martín, J. C., Atencia, J., Mendoza-Yero, O., & Vallés, J. A. (2022). Contribution to the Improvement of the Correlation Filter Method for Modal Analysis with a Spatial Light Modulator. Micromachines, 13(11), 2004. https://doi.org/10.3390/mi13112004