Simulation of Laser-Heating and Energetic Plasma Plume Expansion in Pulsed Laser Deposition of Y3Fe5O12
Abstract
:1. Introduction
2. Theoretical Formulation
2.1. Laser-Target Interaction
2.2. Plasma Plume Expansion
3. Numerical Implementation
3.1. Laser Parameters and Material Properties
3.2. Simulation of the Temperature of the YIG Target
3.3. Simulation of Plasma Plume Expansion
4. Result and Discussion
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kajiwara, Y.; Harii, K.; Takahashi, S.; Ohe, J.; Uchida, K.; Mizuguchi, M.; Umezawa, H.; Kawai, H.; Ando, K.; Takanashi, K.; et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 2010, 464, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.-I.; Xiao, J.; Adachi, H.; Von Der Ohe, J.; Takahashi, S.; Ieda, J.; Ota, T.; Kajiwara, Y.; Umezawa, H.; Kawai, H.; et al. Spin Seebeck insulator. Nat. Mater. 2010, 9, 894–897. [Google Scholar] [CrossRef]
- Kelly, O.D.; Anane, A.; Bernard, R.; Ben Youssef, J.; Hahn, C.; Molpeceres, A.H.; Carrétéro, C.; Jacquet, E.; Deranlot, C.; Bortolotti, P.; et al. Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system. Appl. Phys. Lett. 2013, 103, 082408. [Google Scholar] [CrossRef] [Green Version]
- Jungfleisch, M.B.; Lauer, V.; Neb, R.; Chumak, A.; Hillebrands, B. Improvement of the yttrium iron garnet/platinum interface for spin pumping-based applications. Appl. Phys. Lett. 2013, 103, 022411. [Google Scholar] [CrossRef]
- Chrisey, D.B.; Hubler, G.K. Pulsed Laser Deposition of Thin Films; John and Wiley and Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Hauser, C.; Richter, T.; Homonnay, N.; Eisenschmidt, C.; Qaid, M.; Deniz, H.; Hesse, D.; Sawicki, M.; Ebbinghaus, S.G.; Schmidt, G. Yttrium Iron Garnet Thin Films with Very Low Damping Obtained by Recrystallization of Amorphous Material. Sci. Rep. 2016, 6, 20827. [Google Scholar] [CrossRef] [Green Version]
- Capku, Z.; Yildiz, F. Spin wave modes observation in YIG thin films with perpendicular magnetic anisotropy. J. Magn. Magn. Mater. 2021, 538, 168290. [Google Scholar] [CrossRef]
- Balinskiy, M.; Ojha, S.; Chiang, H.; Ranjbar, M.; Ross, C.A.; Khitun, A. Spin wave excitation in sub-micrometer thick Y3Fe5O12 films fabricated by pulsed laser deposition on garnet and silicon substrates: A comparative study. J. Appl. Phys. 2017, 122, 123904. [Google Scholar] [CrossRef]
- Kumar, N.; Misra, D.; Venkataramani, N.; Prasad, S.; Krishnan, R. Magnetic properties of pulsed laser ablated YIG thin films on different substrates. J. Magn. Magn. Mater. 2004, 272–276 (Suppl. S1), E899–E900. [Google Scholar] [CrossRef]
- Schou, J.; Amoruso, S.; Lunney, J.G. Plume Dynamics. In Laser Ablation and Its Applications; Springer: Boston, MA, USA, 2007; Volume 129, pp. 67–95. [Google Scholar] [CrossRef]
- Harilal, S.S.; Phillips, M.C.; Froula, D.H.; Anoop, K.K.; Issac, R.C.; Beg, F.N. Optical diagnostics of laser-produced plasmas. Rev. Mod. Phys. 2022, 94, 035002. [Google Scholar] [CrossRef]
- Marla, D.; Bhandarkar, U.V.; Joshi, S.S. Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals. J. Appl. Phys. 2011, 109, 021101. [Google Scholar] [CrossRef]
- Peterlongo, M.A.; Kelly, R. Laser-pulse sputtering of aluminum: Vaporization, boiling, superheating, and gas-dynamic effects. Phys. Rev. E 1994, 50, 4716. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Huang, Y.; Jiao, J.; Wang, H.; Wang, J.; Zhang, W.; Sheng, L. Numerical Simulation on Pulsed Laser Ablation of the Single-Crystal Superalloy Considering Material Moving Front and Effect of Comprehensive Heat Dissipation. Micromachines 2021, 12, 225. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Wang, Y.; Zhang, X.; Hui, Z.; Zhang, H.; Wageh, S.; Al-Hartomy, O.A.; Al-Sehemi, A.G. Optical-intensity modulators with PbTe thermoelectric nanopowders for ultrafast photonics. Appl. Mater. Today 2022, 28, 101546. [Google Scholar] [CrossRef]
- Feng, J.; Li, X.; Zhu, G.; Wang, Q.J. Emerging high-performance Sns/CdS nanoflowers heterojunction for ultrafast photonics. ACS Appl. Mater. Interfaces 2020, 12, 43098–43105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Qyyum, A.; Feng, T.; Guo, P.; Jiang, J.; Zheng, H. PbS Nanoparticles for Ultrashort Pulse Generation in Optical Communication Region. Part. Part. Syst. Charact. 2018, 35, 1800341. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Guo, Y.; Qyyum, A.; Shi, Z.; Feng, T.; Zhang, Y.; Jiang, C.; Liu, X. SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small 2019, 15, 1902811. [Google Scholar] [CrossRef]
- Lunney, J.G.; Jordan, R. Pulsed laser ablation of metals. Appl. Surf. Sci. 1998, 127–129, 941–946. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, D.; Li, Z.; Hou, S.; Yu, B.; Guan, L.; Tan, X.; Li, L. A new model of pulsed laser ablation and plasma shielding. Phys. B Condens. Matter 2005, 362, 82–87. [Google Scholar] [CrossRef]
- Singh, R.K.; Narayan, J. Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. B 1990, 41, 8843–8859. [Google Scholar] [CrossRef]
- Anisimov, S.I.; Luk’Yanchuk, B.S. Selected problems of laser ablation theory. Physics-Uspekhi 2002, 45, 293–324. [Google Scholar] [CrossRef] [Green Version]
- Stapleton, M.W.; McKiernan, A.P.; Mosnier, J.-P. Expansion dynamics and equilibrium conditions in a laser ablation plume of lithium: Modeling and experiment. J. Appl. Phys. 2005, 97, 064904. [Google Scholar] [CrossRef]
- Amoruso, S.; Bruzzese, R.; Spinelli, N.; Velotta, R. Characterization of laser-ablation plasmas. J. Phys. B At. Mol. Opt. Phys. 1999, 32, R131–R172. [Google Scholar] [CrossRef]
- Neamtu, J.; Mihailescu, I.N.; Ristoscu, C.; Hermann, J. Theoretical modelling of phenomena in the pulsed-laser deposition process: Application to Ti targets ablation in low-pressure N2. J. Appl. Phys. 1999, 86, 6096–6106. [Google Scholar] [CrossRef]
- Chen, Z.; Bogaerts, A. Laser ablation of Cu and plume expansion into 1 atm ambient gas. J. Appl. Phys. 2005, 97, 063305. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, S.I.; Bäuerle, D.; Luk’Yanchuk, B.S. Gas dynamics and film profiles in pulsed-laser deposition of materials. Phys. Rev. B 1993, 48, 12076–12081. [Google Scholar] [CrossRef]
- Zel’Dovich, Y.B.; Raizer, Y.P.; Hayes, W.D.; Probstein, R.F.; Gill, S.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena; Academic Press: New York, NY, USA, 1996. [Google Scholar] [CrossRef]
- Haynes, W.M.; Lide, D.R.; Bruno, T.J. CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Grant, P.M. Reflectivity of YIG And YGG: Observation of charge transfer and crystal field transitions. Appl. Phys. Lett. 1967, 11, 166–168. [Google Scholar] [CrossRef]
- Metalfron. Available online: https://www.metalfron.com/product/yttrium-iron-garnet-target-3/ (accessed on 1 September 2022).
- Nur-E-Alam, M.; Vasiliev, M.; Alameh, K. Optical constants of rare-earth substituted amorphous oxide-mix-based layers deposited to enable synthesis of magneto-optic garnets. Opt. Mater. 2019, 98, 109309. [Google Scholar] [CrossRef]
- Suwardy, J.; Darma, Y. Thermal annealing effects of SrTiO3 film on Si(100). In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2013; Volume 1554, pp. 112–115. [Google Scholar] [CrossRef]
Parameters | Symbol | Value |
---|---|---|
Wavelength | 532 nm | |
Laser Energy | 446 mJ | |
Repetition Rate | - | 10 Hz |
Beam Diameter | 9.5 mm | |
Pulsed Width (FWHM) | w | 5 ns |
Laser Fluence | 0.63 J/cm2 | |
Peak Intensity | 1.26 × 108 W/cm2 |
Properties | Symbol | Value | Refs. |
---|---|---|---|
Solid phase thermal conductivity | 7.4 J/smK | [29] | |
Liquid phase thermal conductivity | 7.4 J/smK | - | |
Solid phase density | 5170 kg/m3 | [29] | |
Liquid phase density | 5170 kg/m3 | - | |
Enthalpy of vaporization | 8 × 106 J/kg | - | |
Reflectivity | R | 0.13 | [30] |
Solid phase specific heat | 590 J/kgK | [29] | |
Liquid phase specific heat | 590 J/kgK | - | |
Thermal diffusivity | 2.4 × 10−6 m2/s | calculated | |
Melting point | 1828 K | [29] | |
Boiling point | 3611 K | [31] | |
Absorption coefficient (@532 nm) | 2.5 × 106 m−1 | [32] |
γ | TP (K) | Z0 = Hmax (µm) | E/M (J/kg) |
---|---|---|---|
1.2 | 7000 | 13.29 | |
1.2 | 15,000 | 19.45 | |
1.2 | 20,000 | 22.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwardy, J.; Akhir, M.P.M.; Kurniawan, R.; Hermanto, B.R.; Anshori, I.; Fauzi, M.H. Simulation of Laser-Heating and Energetic Plasma Plume Expansion in Pulsed Laser Deposition of Y3Fe5O12. Micromachines 2022, 13, 2012. https://doi.org/10.3390/mi13112012
Suwardy J, Akhir MPM, Kurniawan R, Hermanto BR, Anshori I, Fauzi MH. Simulation of Laser-Heating and Energetic Plasma Plume Expansion in Pulsed Laser Deposition of Y3Fe5O12. Micromachines. 2022; 13(11):2012. https://doi.org/10.3390/mi13112012
Chicago/Turabian StyleSuwardy, Joko, Muzakkiy Putra Muhammad Akhir, Robi Kurniawan, Beni Rio Hermanto, Isa Anshori, and Mohammad Hamzah Fauzi. 2022. "Simulation of Laser-Heating and Energetic Plasma Plume Expansion in Pulsed Laser Deposition of Y3Fe5O12" Micromachines 13, no. 11: 2012. https://doi.org/10.3390/mi13112012
APA StyleSuwardy, J., Akhir, M. P. M., Kurniawan, R., Hermanto, B. R., Anshori, I., & Fauzi, M. H. (2022). Simulation of Laser-Heating and Energetic Plasma Plume Expansion in Pulsed Laser Deposition of Y3Fe5O12. Micromachines, 13(11), 2012. https://doi.org/10.3390/mi13112012