Reprogrammable Metasurface Controlled by 2D Thermal Fields
Abstract
:1. Introduction
2. Principle and Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, S.; Baek, S.; Kim, T.T.; Cho, H.; Lee, S.; Kang, J.H.; Min, B. Metamaterials for enhanced optical responses and their application to active control of terahertz waves. Adv. Mater. 2020, 32, 2000250. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Shi, C.B.; Chen, T.Y.; Qi, M.Q.; Li, Y.B.; Cui, T.J. Broadband metamaterial lens antennas with special properties by controlling both refractive-index distribution and feed directivity. J. Opt. 2018, 20, 045101. [Google Scholar] [CrossRef]
- Qian, C.; Zheng, B.; Shen, Y.; Jing, L.; Li, E.; Shen, L.; Chen, H. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics 2020, 14, 383–390. [Google Scholar] [CrossRef]
- Ma, Q.; Mei, Z.L.; Zhu, S.K.; Jin, T.Y.; Cui, T.J. Experiments on active cloaking and illusion for Laplace equation. Phys. Rev. Lett. 2013, 111, 173901. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Ma, Q.; Liu, C.; Xiao, Q.; Gao, X.; Yan, T.; Miao, L.; Li, L.; Cui, T.J. High-Resolution Programmable Metasurface Imager Based on Multilayer Perceptron Network. Adv. Opt. Mater. 2022, 10, 2200619. [Google Scholar] [CrossRef]
- Zhao, X.; Duan, G.; Wu, K.; Anderson, S.W.; Zhang, X. Intelligent metamaterials based on nonlinearity for magnetic resonance imaging. Adv. Mater. 2019, 31, 1905461. [Google Scholar] [CrossRef]
- Li, L.; Ruan, H.; Liu, C.; Li, Y.; Shuang, Y.; Alù, A.; Qiu, C.-W.; Cui, T.J. Machine-learning reprogrammable metasurface imager. Nat. Commun. 2019, 10, 1082. [Google Scholar] [CrossRef] [Green Version]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Xiao, Q.; Hong, Q.R.; Gao, X.; Galdi, V.; Cui, T.J. Digital Coding Metasurfaces: From Theory to Applications. IEEE Antennas Propag. Mag. 2022, 54, 96–109. [Google Scholar] [CrossRef]
- Reichel, K.S.; Lozada-Smith, N.; Joshipura, I.D.; Ma, J.; Shrestha, R.; Mendis, R.; Dickey, M.D.; Mittleman, D.M. Electrically reconfigurable terahertz signal processing devices using liquid metal components. Nat. Commun. 2018, 9, 4202. [Google Scholar] [CrossRef]
- Ma, Q.; Cui, T.J. Information metamaterials: Bridging the physical world and digital world. PhotoniX 2020, 1, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Liu, C.; Xiao, Q.; Gu, Z.; Gao, X.; Li, L.; Cui, T.J. Information metasurfaces and intelligent metasurfaces. Photonics Insights 2022, 1, R01. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Zheng, Q.; Genin, G.M.; Chen, C. Programmable and robust static topological solitons in mechanical metamaterials. Nat. Commun. 2019, 10, 5605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, A.; Colburn, S.; Trivedi, R.; Fryett, T.K.; Dodson, C.M.; Majumdar, A. Low-contrast dielectric metasurface optics. ACS Photonics 2016, 3, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Conteduca, D.; Brunetti, G.; Pitruzzello, G.; Tragni, F.; Dholakia, K.; Krauss, T.F.; Ciminelli, C. Exploring the limit of multiplexed near-field optical trapping. ACS Photonics 2021, 8, 2060–2066. [Google Scholar] [CrossRef]
- Yang, Y.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 2014, 5, 5753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, C.H.; Tseng, M.L.; Chen, J.; Wu, P.C.; Chen, Y.H.; Wang, H.C.; Chen, T.Y.; Hsieh, W.T.; Wu, H.J.; Sun, G. Active dielectric metasurface based on phase-change medium (Laser Photonics Rev. 10 (6)/2016). Laser Photonics Rev. 2016, 10, 1063. [Google Scholar] [CrossRef]
- Chen, L.; Ma, Q.; Jing, H.B.; Cui, H.Y.; Liu, Y.; Cui, T.J. Space-Energy Digital-Coding Metasurface Based on an Active Amplifier. Phys. Rev. Appl. 2019, 11, 6. (In English) [Google Scholar] [CrossRef]
- Chen, L.; Ma, Q.; Nie, Q.F.; Hong, Q.R.; Cui, H.Y.; Ruan, Y.; Cui, T.J. Dual-polarization programmable metasurface modulator for near-field information encoding and transmission. Photonics Res. 2021, 9, 116–124. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, J.; Luo, Y.; Ma, Q.; Bai, G.D.; Zhang, H.C.; Cui, T.J. Reconfigurable Parametric Amplifications of Spoof Surface Plasmons. Adv. Sci. 2021, 8, e2100795. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, J.; Ma, Q.; Cui, W.Y.; Ren, Y.; Luo, Y.; Cui, T.J. Nonmagnetic Spoof Plasmonic Isolator Based on Parametric Amplification. Laser Photonics Rev. 2022, 16, 2100578. [Google Scholar] [CrossRef]
- Liu, C.; Ma, Q.; Luo, Z.J.; Hong, Q.R.; Xiao, Q.; Zhang, H.C.; Miao, L.; Yu, W.M.; Cheng, Q.; Li, L.; et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron. 2022, 5, 113–122. [Google Scholar] [CrossRef]
- Ma, Q.; Gao, W.; Xiao, Q.; Ding, L.; Gao, T.; Zhou, Y.; Gao, X.; Yan, T.; Liu, C.; Gu, Z.; et al. Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform. eLight 2022, 2, 11. [Google Scholar] [CrossRef]
- You, J.W.; Ma, Q.; Lan, Z.; Xiao, Q.; Panoiu, N.C.; Cui, T.J. Reprogrammable plasmonic topological insulators with ultrafast control. Nat. Commun. 2021, 12, 5468. [Google Scholar] [CrossRef]
- Ma, Q.; Hong, Q.R.; Bai, G.D.; Jing, H.B.; Wu, R.Y.; Bao, L.; Cheng, Q.; Cui, T.J. Editing Arbitrarily Linear Polarizations Using Programmable Metasurface. Phys. Rev. Appl. 2020, 13, 021003. (In English) [Google Scholar] [CrossRef]
- Chen, L.; Ma, Q.; Luo, S.S.; Ye, F.J.; Cui, H.Y.; Cui, T.J. Touch-Programmable Metasurface for Various Electromagnetic Manipulations and Encryptions. Small 2022, 18, e2203871. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Chu, S.-C.A.; Xia, Y.; Wang, K.-W. Programmable Self-Locking Origami Mechanical Metamaterials. Adv. Mater. 2018, 30, 1706311. [Google Scholar] [CrossRef]
- Ma, Q.; Hong, Q.R.; Gao, X.; Xiao, Q.; Chen, L.; Cui, T.J. Highly integrated programmable metasurface for multifunctions in reflections and transmissions. APL Mater. 2022, 10, 061113. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, M.; Zhu, R.; Niu, X.-D. Modular metamaterials composed of foldable obelisk-like units with reprogrammable mechanical behaviors based on multistability. Sci. Rep. 2019, 9, 18812. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Bai, G.D.; Jing, H.B.; Yang, C.; Li, L.; Cui, T.J. Smart metasurface with self-adaptively reprogrammable functions. Light-Sci. Appl. 2019, 8, 98. [Google Scholar] [CrossRef]
- Ma, Q.; Hong, Q.R.; Gao, X.X.; Jing, H.B.; Liu, C.; Bai, G.D.; Cheng, Q.; Cui, T.J. Smart sensing metasurface with self-defined functions in dual polarizations. Nanophotonics 2020, 9, 3271–3278. (In English) [Google Scholar] [CrossRef]
- Tian, X.; Lee, P.M.; Tan, Y.J.; Wu, T.L.Y.; Yao, H.; Zhangl, M.; Li, Z.; Ng, K.A.; Tee, B.C.K.; Ho, J.S. Wireless body sensor networks based on metamaterial textiles. Nat. Electron. 2019, 2, 243. [Google Scholar] [CrossRef]
- Zhang, X.G.; Jiang, W.X.; Jiang, H.L.; Wang, Q.; Tian, H.W.; Bai, L.; Luo, Z.J.; Sun, S.; Luo, Y.; Qiu, C.-W.; et al. An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron. 2020, 3, 165–171. [Google Scholar] [CrossRef]
- Zhang, X.G.; Tang, W.X.; Jiang, W.X.; Bai, G.D.; Tang, J.; Bai, L.; Qiu, C.-W.; Cui, T.J. Light-Controllable Digital Coding Metasurfaces. Adv. Sci. 2018, 5, 1801028. [Google Scholar] [CrossRef]
- Knipper, R.; Kopecky, V., Jr.; Huebner, U.; Popp, J.; Mayerhoefer, T.G. Slit-Enhanced Chiral- and Broadband Infrared Ultra-Sensing. Acs Photonics 2018, 5, 3238–3245. [Google Scholar] [CrossRef]
- Guddala, S.; Kumar, R.; Ramakrishna, S.A. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers. Appl. Phys. Lett. 2015, 106, 111901. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Park, J.-H.; Moon, Y.-H.; Baek, C.-W.; Lim, S. Thermal frequency reconfigurable electromagnetic absorber using phase change material. Sensors 2018, 18, 3506. [Google Scholar] [CrossRef] [Green Version]
- Phoenix, A.A.; Wilson, E. Adaptive Thermal Conductivity Metamaterials: Enabling Active and Passive Thermal Control. J. Therm. Sci. Eng. Appl. 2018, 10, 051020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Ye, F.; Tan, H.; Luo, S.; Cui, H.; Chen, L. Reprogrammable Metasurface Controlled by 2D Thermal Fields. Micromachines 2022, 13, 2023. https://doi.org/10.3390/mi13112023
Zhang M, Ye F, Tan H, Luo S, Cui H, Chen L. Reprogrammable Metasurface Controlled by 2D Thermal Fields. Micromachines. 2022; 13(11):2023. https://doi.org/10.3390/mi13112023
Chicago/Turabian StyleZhang, Ming, Fuju Ye, Hongrui Tan, Sisi Luo, Haoyang Cui, and Lei Chen. 2022. "Reprogrammable Metasurface Controlled by 2D Thermal Fields" Micromachines 13, no. 11: 2023. https://doi.org/10.3390/mi13112023
APA StyleZhang, M., Ye, F., Tan, H., Luo, S., Cui, H., & Chen, L. (2022). Reprogrammable Metasurface Controlled by 2D Thermal Fields. Micromachines, 13(11), 2023. https://doi.org/10.3390/mi13112023