Challenges and Opportunities for High-Power and High-Frequency AlGaN/GaN High-Electron-Mobility Transistor (HEMT) Applications: A Review
Abstract
:1. Introduction
2. AlGaN/GaN HEMT Technology
3. Challenges and Opportunities
3.1. Normally-Off Operation
3.2. Self-Heating Issues
3.3. Current Collapse, Peak Electric Field Distribution, and Gate Leakage
3.4. High Ohmic Contact Resistance
4. Conclusions and Future Prospects
- (1)
- As the industry demands normally-off devices for safety reasons, implementing the feature remains a research challenge. Ultimately, the issue requires solutions at the device technology level. p-GaN remains the only viable structural solution. However, issues such as degradation and mechanism failure still exist and require fixes to improve reliability and manufacturability. One suggestion for future improvement is to explore further the idea of a gate insulator layer that can achieve a high threshold voltage, a saturation drain current, and a turn-on voltage while reducing the gate leakage current and instability. This implementation involves the deposition of the Al2O3/AlN gate insulator layer in the p-GaN HEMT design, which can be further improved with modifications such as barrier layer variation. Nevertheless, more investigation is required before it can be widely adopted.
- (2)
- To address self-heating issues, comprehensive device thermal management, mainly focusing on the variation of extrinsic substrates as heat spreaders, is essential for reliable and robust HEMT devices. However, materials with a high thermal conductivity, such as diamond substrates, are still not a viable option due to their lack of compatibility with other substrate materials (GaN-diamond lattice mismatch). This leaves SiC as the most feasible option. To further close the gap between cost and performance, we propose the idea of exploring an LRSiC substrate. On top of being three times less expensive than a standard SiC substrate, it delivers better thermal management than a Si substrate. This suggests that LRSiC could be an excellent and cost-effective solution to the heat problem. However, more research is also required before it can be widely accepted.
- (3)
- Several structural solutions have been identified to resolve the challenges related to a high peak electric field, leakage current, and current collapse. To date, FP technology is a proven solution that can effectively control electric field distribution and lower the peak electric field below the GaN material’s critical electric field. Another possible way is through various structural modifications, including surface passivation, notches, trenches, gate structures, and barrier layer variations. Combining these different structures could resolve these issues. For instance, adding FP and notch structures on the same device could further reduce the challenges of a high peak electric field, leakage current, and current collapse.
- (4)
- Using different metallization strategies is a popular method of overcoming the problem of high-resistance ohmic contact. Researchers have demonstrated that implementing a stack of several materials may help improve ohmic contact resistance. We can expect other material combinations to be exploited in the near future, which may further enhance the ohmic contact.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, J.; Stoffels, S.; Zhao, M.; Tallarico, A.N.; Rossetto, I.; Meneghini, M.; Kang, X.; Bakeroot, B.; Marcon, D.; Kaczer, B.; et al. Time-Dependent Breakdown Mechanisms and Reliability Improvement in Edge Terminated AlGaN/GaN Schottky Diodes under HTRB Tests. IEEE Electron. Device Lett. 2017, 38, 371–374. [Google Scholar] [CrossRef]
- Ma, J.; Matioli, E. High-Voltage and Low-Leakage AlGaN/GaN Tri-Anode Schottky Diodes with Integrated Tri-Gate Transistors. IEEE Electron. Device Lett. 2017, 38, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, J.; Zhao, S.; Zhang, W.; Zhang, Y.; Duan, X.; Chen, J.; Hao, Y. More than 3000 v Reverse Blocking Schottky-Drain AlGaN-Channel HEMTs with >230 MW/cm2 Power Figure-of-Merit. IEEE Electron. Device Lett. 2019, 40, 1724–1727. [Google Scholar] [CrossRef]
- Chang, S.-J.; Cho, K.J.; Jung, H.-W.; Kim, J.-J.; Jang, Y.-J.; Bae, S.-B.; Kim, D.-S.; Bae, Y.; Yoon, H.S.; Ahn, H.-K.; et al. Improvement of Proton Radiation Hardness Using ALD-Deposited Al2O3 Gate Insulator in GaN-Based MIS-HEMTs. ECS J. Solid State Sci. Technol. 2019, 8, Q245–Q248. [Google Scholar] [CrossRef]
- Wang, Y.; Fei, X.-X.; Wu, X.; Li, X.; Yang, J.; Bao, M.; Cao, F. Simulation Study of Single-Event Burnout in GaN MISFET with Schottky Element. IEEE Trans. Electron. Devices 2020, 67, 5466–5471. [Google Scholar] [CrossRef]
- Huang, H.; Sun, Z.; Cao, Y.; Li, F.; Zhang, F.; Wen, Z.; Zhang, Z.; Liang, Y.C.; Hu, L. Investigation of Surface Traps-Induced Current Collapse Phenomenon in AlGaN/GaN High Electron Mobility Transistors with Schottky Gate Structures. J. Phys. D Appl. Phys. 2018, 51, 345102. [Google Scholar] [CrossRef]
- Li, Y.; Jia, Y.; He, Y.; Zhao, Y.; Huang, A.Q.; Zhang, L.; Lei, Y.; Yu, R.; Ma, Q.; Huang, Q.; et al. Evaluation and Analysis of Temperature-Dependent Dynamic RDS, ON of GaN Power Devices Considering High-Frequency Operation. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 111–123. [Google Scholar] [CrossRef]
- Li, R.; Wu, X.; Yang, S.; Sheng, K. Dynamic On-State Resistance Test and Evaluation of GaN Power Devices Under Hard- and Soft-Switching Conditions by Double and Multiple Pulses. IEEE Trans. Power Electron. 2019, 34, 1044–1053. [Google Scholar] [CrossRef]
- Sang, L.; Li, X.; Huang, W.; Rui, J.; Pang, D. A Novel Approach for the Modeling of HEMT High Power Device. Int. J. Numer. Model. Electron. Netw. Devices Fields 2017, 30, e2172. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, X.; Zou, X. Device Design Assessment of Gan Merged P-i-n Schottky Diodes. Electron. 2019, 8, 1550. [Google Scholar] [CrossRef]
- Abdelrahman, A.S.; Erdem, Z.; Attia, Y.; Youssef, M.Z. Wide Bandgap Devices in Electric Vehicle Converters: A Performance Survey Dispositifs à Large Bande Interdite Dans Les Convertisseurs Des Véhicules Électriques: Une Revue Sur La Performance. Can. J. Electr. Comput. Eng. 2018, 41, 45–54. [Google Scholar] [CrossRef]
- Borga, M.; Meneghini, M.; Zanoni, E.; De Santi, C.; Stoffels, S.; Bakeroot, B.; Li, X.; Zhao, M.; Van Hove, M.; Decoutere, S.; et al. Modeling of the Vertical Leakage Current in AlN/Si Heterojunctions for GaN Power Applications. IEEE Trans. Electron. Devices 2020, 67, 595–599. [Google Scholar] [CrossRef] [Green Version]
- Debnath, A.; Dasgupta, N.; Dasgupta, A. Charge-Based Compact Model of Gate Leakage Current for AlInN/GaN and AlGaN/GaN HEMTs. IEEE Trans. Electron. Devices 2020, 67, 834–840. [Google Scholar] [CrossRef]
- Hirose, T.; Imai, M.; Watanabe, K. GaN HEMT Technology for Environmentally Friendly Power Electronics. Fujitsu Sci. Tech. J. 2017, 53, 74–80. [Google Scholar]
- Crupi, G.; Vadalà, V.; Colantonio, P.; Cipriani, E.; Caddemi, A.; Vannini, G.; Schreurs, D.M.M.P. Empowering GaN HEMT Models: The Gateway for Power Amplifier Design. Int. J. Numer. Model. Electron. Netw. Devices Fields 2017, 30, e2125. [Google Scholar] [CrossRef]
- Meng, Q.; Lin, Q.; Jing, W.; Han, F.; Zhao, M.; Jiang, Z. TCAD Simulation for Nonresonant Terahertz Detector Based on Double-Channel GaN/AlGaN High-Electron-Mobility Transistor. IEEE Trans. Electron. Devices 2018, 65, 4807–4813. [Google Scholar] [CrossRef]
- Sano, S.; Ebihara, K.; Yamamoto, T.; Sato, T.; Miyazawa, N. GaN HEMTs for Wireless Communication. SEI Tech. Rev. 2018, 85, 65. [Google Scholar]
- Anand, A.; Reeta; Rawal, D.S.; Narang, R.; Mishra, M.; Saxena, M.; Gupta, M. A Comparative Study on the Accuracy of Small-Signal Equivalent Circuit Modeling for Large Gate Periphery GaN HEMT with Different Source to Drain Length and Gate Width. Microelectron. J. 2021, 118, 105258. [Google Scholar] [CrossRef]
- Pharkphoumy, S.; Janardhanam, V.; Jang, T.-H.; Park, J.; Shim, K.-H.; Choi, C.-J.; Optimized, C. Optimized Device Geometry of Normally-On Field-Plate AlGaN/GaN High Electron Mobility Transistors for High Breakdown Performance Using TCAD Simulation. Electronics 2021, 10, 2642. [Google Scholar] [CrossRef]
- Adak, S.; Chand, N.; Swain, S.K.; Sarkar, A. Effect of AlGaN Back Barrier on InAlN/AlN/GaN E-Mode HEMTs. In Proceedings of the 2019 IEEE Devices for Integrated Circuit (DevIC), Kalyani, India, 23–24 March 2019. [Google Scholar] [CrossRef]
- Ye, H.; Gaevski, M.; Simin, G.; Khan, A.; Fay, P. Electron Mobility and Velocity in Al0.45Ga0.55N-Channel Ultra-Wide Bandgap HEMTs at High Temperatures for RF Power Applications. Appl. Phys. Lett. 2022, 120, 103505. [Google Scholar] [CrossRef]
- Carey, P.H.; Pearton, S.J.; Ren, F.; Baca, A.G.; Klein, B.A.; Allerman, A.A.; Armstrong, A.M.; Douglas, E.A.; Kaplar, R.J.; Kotula, P.G. Extreme Temperature Operation of Ultra-Wide Bandgap AlGaN High Electron Mobility Transistors. IEEE Trans. Semicond. Manuf. 2019, 32, 473–477. [Google Scholar] [CrossRef]
- Zine-eddine, T.; Zahra, H.; Zitouni, M. Design and Analysis of 10 Nm T-Gate Enhancement-Mode MOS-HEMT for High Power Microwave Applications. J. Sci. Adv. Mater. Devices 2019, 4, 180–187. [Google Scholar] [CrossRef]
- Gucmann, F.; Qu, Y.; Deng, N.; Yuan, Y.; Hu, W.; Liu, H.; Wu, S.; Wang, H. Electrical and Thermal Characteristics of AlGaN/GaN HEMT Devices with Dual Metal Gate Structure: A Theoretical Investigation. Materials 2022, 15, 3818. [Google Scholar] [CrossRef]
- Gassoumi, M.; Helali, A.; Maaref, H.; Gassoumi, M. DC and RF Characteristics Optimization of AlGaN/GaN/BGaN/GaN/Si HEMT for Microwave-Power and High Temperature Application. Results Phys. 2019, 12, 302–306. [Google Scholar] [CrossRef]
- Subramani, N.K.; Couvidat, J.; Hajjar, A.A.; Nallatamby, J.-C.; Sommet, R.; Quere, R. Identification of GaN Buffer Traps in Microwave Power AlGaN/GaN HEMTs Through Low Frequency S-Parameters Measurements and TCAD-Based Physical Device Simulations. IEEE J. Electron Devices Soc. 2017, 5, 175–181. [Google Scholar] [CrossRef]
- Grady, R.; Bayram, C. Simulation of Zincblende AlGaN/GaN High Electron Mobility Transistors for Normally-off Operation. J. Phys. D Appl. Phys. 2017, 50, 265104. [Google Scholar] [CrossRef] [Green Version]
- Hezabra, A.; Abdeslam, N.A.; Sengouga, N.; Yagoub, M.C.E. 2D Study of AlGaN/AlN/GaN/AlGaN HEMTs’ Response to Traps. J. Semicond. 2019, 40, 22802. [Google Scholar] [CrossRef]
- Chander, S.; Singh, P.; Gupta, S.; Rawal, D.S.; Gupta, M. Self Heating Effects in GaN High Electron Mobility Transistor for Different Passivation Material. Def. Sci. J. 2020, 70, 511–514. [Google Scholar] [CrossRef]
- Wang, Z.X.; Du, L.; Liu, J.W.; Wang, Y.; Jiang, Y.; Ji, S.W.; Dong, S.W.; Chen, W.W.; Tan, X.H.; Li, J.L.; et al. Breakdown Voltage Enhancement in GaN Channel and AlGaN Channel HEMTs Using Large Gate Metal Height. Chin. Phys. B 2020, 29, 027301. [Google Scholar] [CrossRef]
- Razzak, T.; Hwang, S.; Coleman, A.; Xue, H.; Sohel, S.H.; Bajaj, S.; Zhang, Y.; Lu, W.; Khan, A.; Rajan, S. Design of Compositionally Graded Contact Layers for MOCVD Grown High Al-Content AlGaN Transistors. Appl. Phys. Lett. 2019, 115, 043502. [Google Scholar] [CrossRef]
- Kaushik, P.K.; Singh, S.K.; Gupta, A.; Basu, A.; Chang, E.Y. Impact of Surface States and Aluminum Mole Fraction on Surface Potential and 2DEG in AlGaN/GaN HEMTs. Nanoscale Res. Lett. 2021, 16, 159. [Google Scholar] [CrossRef] [PubMed]
- Vitusevich, S.A.; Danylyuk, S.V.; Klein, N.; Petrychuk, M.V.; Belyaev, A.E.; Vertiatchikh, A.; Eastman, L.F. Low Frequency Noise Parameters in an AlGaN/GaN Heterostructure with 33% and 75% Al Mole Fraction. Int. J. High Speed Electron. Syst. 2004, 14, 762–768. [Google Scholar] [CrossRef]
- Razzak, T.; Rajan, S.; Armstrong, A. Ultra-Wide Bandgap AlxGa1-XN Channel Transistors. Int. J. High Speed Electron. Syst. 2019, 28, 1940009. [Google Scholar] [CrossRef]
- Bajaj, S.; Allerman, A.; Armstrong, A.; Razzak, T.; Talesara, V.; Sun, W.; Sohel, S.H.; Zhang, Y.; Lu, W.; Arehart, A.R.; et al. High Al-Content AlGaN Transistor with 0.5 A/Mm Current Density and Lateral Breakdown Field Exceeding 3.6 MV/Cm. IEEE Electron. Device Lett. 2018, 39, 256–259. [Google Scholar] [CrossRef]
- Xue, H.; Lee, C.H.; Hussian, K.; Razzak, T.; Abdullah, M.; Xia, Z.; Sohel, S.H.; Khan, A.; Rajan, S.; Lu, W. Al0.75Ga0.25N/Al0.6Ga0.4N Heterojunction Field Effect Transistor with FT of 40 GHz. Appl. Phys. Express 2019, 12, 066502. [Google Scholar] [CrossRef]
- Elksne, M.; Al-Khalidi, A.; Wasige, E. A Planar Distributed Channel AlGaN/GaN HEMT Technology. IEEE Trans. Electron. Devices 2019, 66, 2454–2458. [Google Scholar] [CrossRef]
- Verma, S.; Loan, S.A.; Alamoud, A.M. Design and Simulation of a Doping-Less Charge Plasma Based Enhancement Mode GaN MOSFET. J. Comput. Electron. 2018, 17, 256–264. [Google Scholar] [CrossRef]
- Verma, S.; Loan, S.A.; Alharbi, A.G. Polarization Engineered Enhancement Mode GaN HEMT: Design and Investigation. Superlattices Microstruct. 2018, 119, 181–193. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Wang, J. Investigations on Driver and Layout for Paralleled GaN HEMTs in Low Voltage Application. IEEE Access 2019, 7, 179134–179142. [Google Scholar] [CrossRef]
- Lu, S.; Burgos, R.; Lu, G.Q. Packaging and High-Temperature Characterization of a 650 V, 150 A EGaN HEMT. Semicond. Sci. Technol. 2021, 36, 034006. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, R.; Han, J.; Wang, X.; Chen, Q.; Yang, H. The Study of the Single Event Effect in AlGaN/GaN HEMT Based on a Cascode Structure. Electronics 2021, 10, 440. [Google Scholar] [CrossRef]
- Nela, L.; Perera, N.; Erine, C.; Matioli, E. Performance of GaN Power Devices for Cryogenic Applications down to 4.2 K. IEEE Trans. Power Electron. 2021, 36, 7412–7416. [Google Scholar] [CrossRef]
- Cha, E.; Wadefalk, N.; Moschetti, G.; Pourkabirian, A.; Stenarson, J.; Grahn, J. InP HEMTs for Sub-MW Cryogenic Low-Noise Amplifiers. IEEE Electron. Device Lett. 2020, 41, 1005–1008. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, W.; Sun, R.; Liu, C.; Xin, Y.; Xia, Y.; Wang, F.; Xu, X.; Deng, X.; Chen, T.; et al. Modeling the Influence of the Acceptor-Type Trap on the 2DEG Density for GaN MIS-HEMTs. IEEE Trans. Electron. Devices 2020, 67, 2290–2296. [Google Scholar] [CrossRef]
- Cai, Q.; Che, W.; Ma, K.; Xue, Q. A Compact Ku-Band Broadband GaAs Power Amplifier Using an Improved Darlington Power Stage. IEEE Trans. Microw. Theory Tech. 2020, 68, 1. [Google Scholar] [CrossRef]
- Chen, K.J.; Haberlen, O.; Lidow, A.; Tsai, C.L.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si Power Technology: Devices and Applications. IEEE Trans. Electron. Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Jiang, H.; Lyu, Q.; Zhu, R.; Xiang, P.; Cheng, K.; Lau, K.M. 1300 v Normally-OFF p-GaN Gate HEMTs on Si with High ON-State Drain Current. IEEE Trans. Electron. Devices 2021, 68, 653–657. [Google Scholar] [CrossRef]
- Tang, X.; Li, B.; Moghadam, H.A.; Tanner, P.; Han, J.; Dimitrijev, S. Mechanism of Threshold Voltage Shift in P-GaN Gate AlGaN/GaN Transistors. IEEE Electron. Device Lett. 2018, 39, 1145–1148. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, J.; Xiao, M.; Zhang, L.; Hao, Y. High Breakdown-Voltage (>2200V) AlGaN-Channel HEMTs with Ohmic/Schottky Hybrid Drains. IEEE J. Electron. Devices Soc. 2018, 6, 931–935. [Google Scholar] [CrossRef]
- Saito, W.; Takada, Y.; Kuraguchi, M.; Tsuda, K.; Omura, I. Recessed-Gate Structure Approach toward Normally off High-Voltage AlGaN/GaN HEMT for Power Electronics Applications. IEEE Trans. Electron. Devices 2006, 53, 356–362. [Google Scholar] [CrossRef]
- Mizuno, H.; Kishimoto, S.; Maezawa, K.; Mizutani, T. Quasi-Normally-off AlGaN/GaN HEMTs Fabricated by Fluoride-Based Plasma Treatment. Phys. Status Solidi C 2007, 4, 2732–2735. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Y.; Liang, Y.; Mitrovic, I.Z.; Wen, H.; Liu, W.; Zhao, C. Low ON-State Resistance Normally-OFF AlGaN/GaN MIS-HEMTs with Partially Recessed Gate and ZrO Charge Trapping Layer. IEEE Trans. Electron. Devices 2021, 68, 4310–4316. [Google Scholar] [CrossRef]
- Zhu, M.; Ma, J.; Nela, L.; Erine, C.; Matioli, E. High-Voltage Normally-off Recessed Tri-Gate GaN Power MOSFETs with Low on-Resistance. IEEE Electron. Device Lett. 2019, 40, 1289–1292. [Google Scholar] [CrossRef]
- Huang, S.; Liu, X.; Wang, X.; Kang, X.; Zhang, J.; Fan, J.; Shi, J.; Wei, K.; Zheng, Y.; Gao, H.; et al. Ultrathin-Barrier AlGaN/GaN Heterostructure: A Recess-Free Technology for Manufacturing High-Performance GaN-on-Si Power Devices. IEEE Trans. Electron. Devices 2018, 65, 207–214. [Google Scholar] [CrossRef]
- Kumar, V.; Kuliev, A.; Tanaka, T.; Otoki, Y.; Adesida, I. High Transconductance Enhancement-Mode AlGaN/GaN HEMTs on SiC Substrate. Electron. Lett. 2003, 39, 1758–1760. [Google Scholar] [CrossRef]
- Kurt, G.; Gulseren, M.E.; Salkim, G.; Ural, S.; Kayal, O.A.; Ozturk, M.; Butun, B.; Kabak, M.; Ozbay, E. Investigation of a Hybrid Approach for Normally-Off GaN HEMTs Using Fluorine Treatment and Recess Etch Techniques. IEEE J. Electron. Devices Soc. 2019, 7, 351–357. [Google Scholar] [CrossRef]
- Ranjan, R.; Kashyap, N.; Raman, A. High-Performance Dual-Gate-Charge-Plasma-AlGaN/GaN MIS-HEMT. Appl. Phys. A Mater. Sci. Process. 2020, 126, 169. [Google Scholar] [CrossRef]
- Chen, K.J.; Zhou, C. Enhancement-Mode AlGaN/GaN HEMT and MIS-HEMT Technology. Phys. Status Solidi 2011, 208, 434–438. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Li, Q.; Lee, F.C. Evaluation and Application of 600V GaN HEMT in Cascode Structure. In Proceedings of the 2013 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013. [Google Scholar] [CrossRef]
- Hirose, T.; Imai, M.; Joshin, K.; Watanabe, K.; Ogino, T.; Miyazaki, Y.; Shono, K.; Hosoda, T.; Asai, Y. Dynamic Performances of GaN-HEMT on Si in Cascode Configuration. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 16–20 March 2014. [Google Scholar] [CrossRef]
- Lyu, G.; Wang, Y.; Wei, J.; Zheng, Z.; Sun, J.; Zhang, L.; Chen, K.J. A Normally-off Copackaged SiC-JFET/GaN-HEMT Cascode Device for High-Voltage and High-Frequency Applications. IEEE Trans. Power Electron. 2020, 35, 9671–9681. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, X.; Zhang, W.; Lee, F.C.; Li, Q. Evaluation of High-Voltage Cascode GaN HEMT in Different Packages. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 16–20 March 2014. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, S.; Fu, K.; Yu, G.; Li, W.; Zhang, X.; Sun, S.; Song, L.; Li, S.; Hao, R.; et al. Fabrication of Normally-off AlGaN/GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors by Photo-Electrochemical Gate Recess Etching in Ionic Liquid. Appl. Phys. Express 2016, 9, 084102. [Google Scholar] [CrossRef]
- Greco, G.; Fiorenza, P.; Iucolano, F.; Severino, A.; Giannazzo, F.; Roccaforte, F. Conduction Mechanisms at Interface of AlN/SiN Dielectric Stacks with AlGaN/GaN Heterostructures for Normally-off High Electron Mobility Transistors: Correlating Device Behavior with Nanoscale Interfaces Properties. ACS Appl. Mater. Interfaces 2017, 9, 35383–35390. [Google Scholar] [CrossRef] [PubMed]
- Fiorenza, P.; Greco, G.; Giannazzo, F.; Iucolano, F.; Roccaforte, F. Effects of Interface States and near Interface Traps on the Threshold Voltage Stability of GaN and SiC Transistors Employing SiO2 as Gate Dielectric. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2016, 35, 01A101. [Google Scholar] [CrossRef]
- Fiorenza, P.; Greco, G.; Schiliro, E.; Iucolano, F.; Nigro, R.L.; Roccaforte, F. Determining Oxide Trapped Charges in Al2O3 Insulating Films on Recessed AlGaN/GaN Heterostructures by Gate Capacitance Transients Measurements. Jpn. J. Appl. Phys. 2018, 57, 050307. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Liu, J.; Li, M.; He, Y.; Wang, M.; Yu, M.; Wu, W.; Zhou, Y.; Dai, G. Normally-off Fully Recess-Gated GaN Metal-Insulator-Semiconductor Field-Effect Transistor Using Al2O3/Si3N4 Bilayer as Gate Dielectrics. Appl. Phys. Express 2017, 10, 106502. [Google Scholar] [CrossRef]
- Tokuda, H.; Asubar, J.T.; Kuzuhara, M. Design Considerations for Normally-off Operation in Schottky Gate p-GaN/AlGaN/GaN HEMTs. Jpn. J. Appl. Phys. 2020, 59, 084002. [Google Scholar] [CrossRef]
- Kim, N.; Yu, J.; Zhang, W.; Li, R.; Wang, M.; Ng, W.T. Current Trends in the Development of Normally-OFF GaN-on-Si Power Transistors and Power Modules: A Review. J. Electron. Mater. 2020, 49, 6829–6843. [Google Scholar] [CrossRef]
- Wang, H.; Wei, J.; Xie, R.; Liu, C.; Tang, G.; Chen, K.J. Maximizing the Performance of 650-V p-GaN Gate HEMTs: Dynamic RON Characterization and Circuit Design Considerations. IEEE Trans. Power Electron. 2017, 32, 5539–5549. [Google Scholar] [CrossRef]
- Meneghini, M.; Hilt, O.; Wuerfl, J.; Meneghesso, G. Technology and Reliability of Normally-off GaN HEMTs with p-Type Gate. Energies 2017, 10, 153. [Google Scholar] [CrossRef]
- Lai, Y.C.; Zhong, Y.N.; Tsai, M.Y.; Hsin, Y.M. Gate Capacitance and Off-State Characteristics of E-Mode p-GaN Gate AlGaN/GaN High-Electron-Mobility Transistors After Gate Stress Bias. J. Electron. Mater. 2021, 50, 1162–1166. [Google Scholar] [CrossRef]
- Murukesan, K.; Efthymiou, L.; Udrea, F. On the Challenges of Reliable Threshold Voltage Measurement in Ohmic and Schottky Gate P-GaN HEMTs. IEEE J. Electron. Devices Soc. 2021, 9, 831–838. [Google Scholar] [CrossRef]
- Rzin, M.; Curutchet, A.; Labat, N.; Malbert, N.; Brunel, L.; Lambert, B. Schottky Gate of AlGaN/GaN HEMTs: Investigation with DC and Low Frequency Noise Measurements after 7000 Hours HTOL Test. In Proceedings of the 2015 IEEE International Conference on Noise and Fluctuations (ICNF), Xi’an, China, 2–6 June 2015. [Google Scholar] [CrossRef]
- Chakraborty, S.; Kim, T.W. Comprehensive Schottky Barrier Height Behavior and Reliability Instability with Ni/Au and Pt/Ti/Pt/Au on AlGaN/GaN High-Electron-Mobility Transistors. Micromachines 2022, 13, 84. [Google Scholar] [CrossRef] [PubMed]
- Sayadi, L.; Iannaccone, G.; Sicre, S.; Häberlen, O.; Curatola, G. Threshold Voltage Instability in P-GaN Gate AlGaN/GaN HFETs. IEEE Trans. Electron. Devices 2018, 65, 2454–2460. [Google Scholar] [CrossRef]
- Borghese, A.; Di Costanzo, A.; Riccio, M.; Maresca, L.; Breglio, G.; Irace, A.; Pinto, O. Gate Current in P-GaN Gate HEMTs as a Channel Temperature Sensitive Parameter: A Comparative Study between Schottky- and Ohmic-Gate GaN HEMTs. Energies 2021, 14, 8055. [Google Scholar] [CrossRef]
- Bakeroot, B.; Stockman, A.; Posthuma, N.; Stoffels, S.; Decoutere, S. Analytical Model for the Threshold Voltage of P-(Al)GaN High-Electron-Mobility Transistors. IEEE Trans. Electron. Devices 2018, 65, 79–86. [Google Scholar] [CrossRef]
- Kim, K.; Kim, T.J.; Zhang, H.; Liu, D.; Jung, Y.H.; Gong, J.; Ma, Z. AlGaN/GaN Schottky-Gate HEMTs with UV/O-Treated Gate Interface. IEEE Electron. Device Lett. 2020, 41, 1488–1491. [Google Scholar] [CrossRef]
- Panda, D.K.; Lenka, T.R. Modeling and Simulation of Enhancement Mode P-GaN Gate AlGaN/GaN HEMT for RF Circuit Switch Applications. J. Semicond. 2017, 38, 64002. [Google Scholar] [CrossRef]
- Greco, G.; Iucolano, F.; Di Franco, S.; Bongiorno, C.; Patti, A.; Roccaforte, F. Effects of Annealing Treatments on the Properties of Al/Ti/p-GaN Interfaces for Normally off p-GaN HEMTs. IEEE Trans. Electron. Devices 2016, 63, 2735–2741. [Google Scholar] [CrossRef]
- Lukens, G.; Hahn, H.; Kalisch, H.; Vescan, A. Self-Aligned Process for Selectively Etched p-GaN-Gated AlGaN/GaN-on-Si HFETs. IEEE Trans. Electron. Devices 2018, 65, 3732–3738. [Google Scholar] [CrossRef]
- Xu, N.; Hao, R.; Chen, F.; Zhang, X.; Zhang, H.; Zhang, P.; Ding, X.; Song, L.; Yu, G.; Cheng, K.; et al. Gate Leakage Mechanisms in Normally off P-GaN/AlGaN/GaN High Electron Mobility Transistors. Appl. Phys. Lett. 2018, 113, 152104. [Google Scholar] [CrossRef]
- Chang, Y.C.; Ho, Y.L.; Huang, T.Y.; Huang, D.W.; Wu, C.H. Investigation of Normally-off p-Gan/Algan/Gan Hemts Using a Self-Terminating Etching Technique with Multi-Finger Architecture Modulation for High Power Application. Micromachines 2021, 12, 432. [Google Scholar] [CrossRef]
- Liu, C.H.; Chiu, H.C.; Huang, C.R.; Chang, K.J.; Chen, C.T.; Hsueh, K.P. Low Gate Lag Normally-off p-GaN/AlGaN/GaN High Electron Mobility Transistor with Zirconium Gate Metal. Crystals 2020, 10, 25. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhong, Y.; Gao, H.; Dai, S.; He, J.; Feng, M.; Zhao, Y.; Sun, Q.; Dingsun, A.; Yang, H. P-GaN Gate Enhancement-Mode HEMT through a High Tolerance Self-Terminated Etching Process. IEEE J. Electron. Devices Soc. 2017, 5, 340–346. [Google Scholar] [CrossRef]
- Ťapajna, M.; Hilt, O.; Bahat-Treidel, E.; Würfl, J.; Kuzmik, J. Gate Reliability Investigation in Normally-off p-Type-GaN Cap/AlGaN/GaN HEMTs under Forward Bias Stress. IEEE Electron. Device Lett. 2016, 37, 385–388. [Google Scholar] [CrossRef]
- Yu, C.J.; Hsu, C.W.; Wu, M.C.; Hsu, W.C.; Chuang, C.Y.; Liu, J.Z. Improved DC and RF Performance of Novel MIS P-GaN-Gated HEMTs by Gate-All-Around Structure. IEEE Electron. Device Lett. 2020, 41, 673–676. [Google Scholar] [CrossRef]
- Wu, T.L.; Marcon, D.; You, S.; Posthuma, N.; Bakeroot, B.; Stoffels, S.; Van Hove, M.; Groeseneken, G.; Decoutere, S. Forward Bias Gate Breakdown Mechanism in Enhancement-Mode p-GaN Gate AlGaN/GaN High-Electron Mobility Transistors. IEEE Electron. Device Lett. 2015, 36, 1001–1003. [Google Scholar] [CrossRef]
- Niu, D.; Wang, Q.; Li, W.; Chen, C.; Xu, J.; Jiang, L.; Feng, C.; Xiao, H.; Wang, Q.; Xu, X.; et al. The Influence of the Different Repair Methods on the Electrical Properties of the Normally off P-Gan Hemt. Micromachines 2021, 12, 131. [Google Scholar] [CrossRef]
- Chiu, H.C.; Chang, Y.S.; Li, B.H.; Wang, H.C.; Kao, H.L.; Hu, C.W.; Xuan, R. High-Performance Normally off p-GaN Gate HEMT with Composite AlN/Al0.17Ga0.83N/Al0.3Ga0.7N Barrier Layers Design. IEEE J. Electron. Devices Soc. 2018, 6, 201–206. [Google Scholar] [CrossRef]
- Zhou, G.; Wan, Z.; Yang, G.; Jiang, Y.; Sokolovskij, R.; Yu, H.; Xia, G. Gate Leakage Suppression and Breakdown Voltage Enhancement in P-GaN HEMTs Using Metal/Graphene Gates. IEEE Trans. Electron. Devices 2020, 67, 875–880. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zheng, Z.; Yang, S.; Song, W.; He, J.; Chen, K.J. P-GaN Gate HEMT with Surface Reinforcement for Enhanced Gate Reliability. IEEE Electron. Device Lett. 2021, 42, 22–25. [Google Scholar] [CrossRef]
- Efthymiou, L.; Longobardi, G.; Camuso, G.; Chien, T.; Chen, M.; Udrea, F. On the Physical Operation and Optimization of the P-GaN Gate in Normally-off GaN HEMT Devices. Appl. Phys. Lett. 2017, 110, 123502. [Google Scholar] [CrossRef]
- Tsai, W.-S.; Qin, Z.-W.; Hsin, Y. Design of Hybrid Schottky-Ohmic Gate in Normally-Off p-GaN Gate AlGaN/GaN HEMTs. ECS J. Solid State Sci. Technol. 2021, 10, 125003. [Google Scholar] [CrossRef]
- Chiu, H.C.; Liu, C.H.; Huang, C.R.; Chiu, C.C.; Wang, H.C.; Kao, H.L.; Lin, S.Y.; Chien, F.T. Normally-off p-Gan Gated Algan/Gan Mis-Hemts with Ald-Grown Al2O3/Aln Composite Gate Insulator. Membranes 2021, 11, 727. [Google Scholar] [CrossRef] [PubMed]
- Stockman, A.; Masin, F.; Meneghini, M.; Zanoni, E.; Meneghesso, G.; Bakeroot, B.; Moens, P. Gate Conduction Mechanisms and Lifetime Modeling of P-Gate AlGaN/GaN High-Electron-Mobility Transistors. IEEE Trans. Electron. Devices 2018, 65, 5365–5372. [Google Scholar] [CrossRef]
- He, J.; Wei, J.; Yang, S.; Wang, Y.; Zhong, K.; Chen, K.J. Frequency- and Temperature-Dependent Gate Reliability of Schottky-Type p -GaN Gate HEMTs. IEEE Trans. Electron. Devices 2019, 66, 3453–3458. [Google Scholar] [CrossRef]
- Stoffels, S.; Posthuma, N.; Decoutere, S.; Bakeroot, B.; Tallarico, A.N.; Sangiorgi, E.; Fiegna, C.; Zheng, J.; Ma, X.; Borga, M.; et al. Perimeter Driven Transport in the P-GaN Gate as a Limiting Factor for Gate Reliability. In Proceedings of the 2019 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 31 March–4 April 2019. [Google Scholar] [CrossRef]
- Wu, T.L.; Tang, S.W.; Jiang, H.J. Investigation of Recessed Gate AlGaN/GaN MIS-HEMTs with Double AlGaN Barrier Designs toward an Enhancement-Mode Characteristic. Micromachines 2020, 11, 163. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Cheng, W.; Gao, J.; Liang, H.; Huang, H.; Wang, R.; Sun, N.; Tao, P.; Ren, Y.; Song, S.; et al. Improving Performances of Enhancement-Mode AlGaN/GaN MIS-HEMTs on 6-Inch Si Substrate Utilizing SiON/Al2O3 Stack Dielectrics. IEEE Electron. Device Lett. 2020, 41, 135–138. [Google Scholar] [CrossRef]
- Xia, F.; Sun, H.; Liu, Z.; Xia, X.; Tan, X.; Ma, J.; Zhang, M.; Guo, Z. Investigation of High Threshold Voltage E-Mode AlGaN/GaN MIS-HEMT with Triple Barrier Layer. Results Phys. 2021, 25, 104189. [Google Scholar] [CrossRef]
- Deen, D.A.; Miller, R.A.; Osinsky, A.V.; Downey, B.P.; Storm, D.F.; Meyer, D.J.; Scott Katzer, D.; Nepal, N. Polarization-Mediated Debye-Screening of Surface Potential Fluctuations in Dual-Channel AlN/GaN High Electron Mobility Transistors. J. Appl. Phys. 2016, 120, 235704. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Kim, J.G.; Ju, J.M.; Ahn, W.H.; Kang, S.H.; Lee, J.H. AlInGaN/GaN Double-Channel FinFET with High on-Current and Negligible Current Collapse. Solid. State Electron. 2020, 164, 107678. [Google Scholar] [CrossRef]
- Kondo, T.; Akazawa, Y.; Iwata, N. Effects of P-GaN Gate Structures and Fabrication Process on Performances of Normally-off AlGaN/GaN High Electron Mobility Transistors. Jpn. J. Appl. Phys. 2019, 59, SAAD02. [Google Scholar] [CrossRef]
- Sato, T.; Toguchi, M.; Komatsu, Y.; Uemura, K. Low-Damage Etching for AlGaN/GaN HEMTs Using Photo-Electrochemical Reactions. IEEE Trans. Semicond. Manuf. 2019, 32, 483–488. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.; Cheng, W.C.; He, M.; Lei, S.; Wang, L.; Wu, J.; Zeng, F.; Hu, Q.; Wang, Q.; Zhao, F.; et al. Increasing Threshold Voltage and Reducing Leakage of AlGaN/GaN HEMTs Using Dual-Layer SiNx Stressors. Semicond. Sci. Technol. 2020, 35, 045010. [Google Scholar] [CrossRef]
- Ji, K.; Cui, X.; Chen, J.; Guo, Q.; Jiang, B.; Wang, B.; Sun, W.; Hu, W.; Hua, Q. Effect of Backside Dry Etching on the Device Performance of AlGaN/GaN HEMTs. Nanotechnology 2021, 32, 355203. [Google Scholar] [CrossRef] [PubMed]
- Taube, A.; Kamiński, M.; Ekielski, M.; Kruszka, R.; Jankowska-Śliwińska, J.; Michałowski, P.P.; Zdunek, J.; Szerling, A. Selective Etching of P-GaN over Al0.25Ga0.75N in Cl2/Ar/O2 ICP Plasma for Fabrication of Normally-off GaN HEMTs. Mater. Sci. Semicond. Process. 2021, 122, 105450. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, L.; Zhu, K.; Yang, Y.; Fan, R.; Pan, M.; Xu, S.; Xu, M.; Wang, C.; Wu, C.; et al. High Selectivity, Low Damage ICP Etching of p-GaN over AlGaN for Normally-off p-GaN HEMTs Application. Micromachines 2022, 13, 589. [Google Scholar] [CrossRef]
- Osipov, K.; Ostermay, I.; Bodduluri, M.; Brunner, F.; Tränkle, G.; Würfl, J. Local 2DEG Density Control in Heterostructures of Piezoelectric Materials and Its Application in GaN HEMT Fabrication Technology. IEEE Trans. Electron. Devices 2018, 65, 3176–3184. [Google Scholar] [CrossRef]
- Cheng, W.C.; Fang, T.; Lei, S.; Zhao, Y.; He, M.; Chan, M.; Xia, G.M.; Zhao, F.; Yu, H. Silicon Nitride Stress Liner Impacts on the Electrical Characteristics of AlGaN/GaN HEMTs. In Proceedings of the 2019 IEEE International Conference on Electron Devices and Solid-State Circuits, Xi’an, China, 12–14 June 2019. [Google Scholar] [CrossRef] [Green Version]
- Tallarico, A.N.; Stoffels, S.; Magnone, P.; Posthuma, N.; Sangiorgi, E.; Decoutere, S.; Fiegna, C. Investigation of the P-GaN Gate Breakdown in Forward-Biased GaN-Based Power HEMTs. IEEE Electron. Device Lett. 2017, 38, 99–102. [Google Scholar] [CrossRef]
- Yang, F.; Xu, C.; Akin, B. Characterization of Threshold Voltage Instability under Off-State Drain Stress and Its Impact on p-GaN HEMT Performance. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 4026–4035. [Google Scholar] [CrossRef]
- Tang, X.; Li, B.; Moghadam, H.A.; Tanner, P.; Han, J.; Li, H.; Dimitrijev, S.; Wang, J. Mechanism of Leakage Current Increase in P-GaN Gate AlGaN/GaN Power Devices Induced by ON-State Gate Bias. Jpn. J. Appl. Phys. 2018, 57, 125003. [Google Scholar] [CrossRef]
- Wang, N.; Wang, H.; Lin, X.; Qi, Y.; Duan, T.; Jiang, L.; Iervolino, E.; Cheng, K.; Yu, H. Investigation of AlGaN/GaN HEMTs Degradation with Gate Pulse Stressing at Cryogenic Temperature. AIP Adv. 2017, 7, 095317. [Google Scholar] [CrossRef] [Green Version]
- Amano, H.; Baines, Y.; Beam, E.; Borga, M.; Bouchet, T.; Chu, R.; De Santi, C.; De Souza, M.M. The 2018 GaN Power Electronics Roadmap—IOPscience. J. Phys. D Appl. Phys. 2018, 51, 163001. [Google Scholar] [CrossRef]
- Wang, A.; Zeng, L.; Wang, W. Three-Dimensional Steady and Transient Fully Coupled Electro-Thermal Simulation of AlGaN/GaN High Electron Mobility Transistors: Effects of Lateral Heat Dissipation and Thermal Crosstalk between Gate Fingers. AIP Adv. 2017, 7, 095304. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, J.; Cai, J.-D.; Xu, Y.-F.; Fan, B.-F.; Wang, G. Numerical Simulation and Analysis of Process Parameters of GaN-MOCVD Reactor. Int. Commun. Heat Mass Transf. 2018, 91, 64–76. [Google Scholar] [CrossRef]
- Weituschat, L.M.; Dickmann, W.; Guimbao, J.; Ramos, D.; Kroker, S.; Postigo, P.A. Photonic and Thermal Modelling of Microrings in Silicon, Diamond and GaN for Temperature Sensing. Nanomaterials 2020, 10, 934. [Google Scholar] [CrossRef]
- Hosseinzadeh Sani, M.; Khosroabadi, S. Improving Thermal Effects and Reduction of Self-Heating Phenomenon in AlGaN/GaN/Si Based HEMT. J. Electron. Mater. 2021, 50, 2295–2304. [Google Scholar] [CrossRef]
- Amar, A.; Radi, B.; Hami, A.E.; Di Bartolomeo, A. Electrothermal Reliability of the High Electron Mobility Transistor (HEMT). Appl. Sci. 2021, 11, 10720. [Google Scholar] [CrossRef]
- Alim, M.A.; Ali, M.M.; Rezazadeh, A.A.; Gaquiere, C. Thermal Response for Intermodulation Distortion Components of GaN HEMT for Low and High Frequency Applications. Microelectron. Eng. 2019, 209, 53–59. [Google Scholar] [CrossRef]
- Sodan, V.; Stoffels, S.; Oprins, H.; Decoutere, S.; Altmann, F.; Baelmans, M.; De Wolf, I. Fast and Distributed Thermal Model for Thermal Modeling of GaN Power Devices. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1747–1755. [Google Scholar] [CrossRef]
- Hao, Q.; Zhao, H.; Xiao, Y.; Kronenfeld, M.B. Electrothermal Studies of GaN-Based High Electron Mobility Transistors with Improved Thermal Designs. Int. J. Heat Mass Transf. 2018, 116, 496–506. [Google Scholar] [CrossRef]
- Vallabhaneni, A.K.; Chen, L.; Gupta, M.P.; Kumar, S. Solving Nongray Boltzmann Transport Equation in Gallium Nitride. J. Heat Transf. 2017, 139, 102701. [Google Scholar] [CrossRef]
- Yalamarthy, A.S.; So, H.; Muñoz Rojo, M.; Suria, A.J.; Xu, X.; Pop, E.; Senesky, D.G. Tuning Electrical and Thermal Transport in AlGaN/GaN Heterostructures via Buffer Layer Engineering. Adv. Funct. Mater. 2018, 28, 1705823. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.; D’Alessandro, V.; Costagliola, M.; Sasso, G.; Rinaldi, N. Analysis of the Thermal Behavior of AlGaN/GaN HEMTs. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2012, 177, 1343–1351. [Google Scholar] [CrossRef]
- Liao, Z.; Guo, C.; Meng, J.; Jiang, B.; Gao, L.; Su, Y.; Wang, R.; Feng, S. Thermal Evaluation of GaN-Based HEMTs with Various Layer Sizes and Structural Parameters Using Finite-Element Thermal Simulation. Microelectron. Reliab. 2017, 74, 52–57. [Google Scholar] [CrossRef]
- Helou, A.E.; Komarov, P.; Tadjer, M.J.; Anderson, T.J.; Francis, D.A.; Feygelson, T.; Pate, B.B.; Hobart, K.D.; Raad, P.E. High-Resolution Thermoreflectance Imaging Investigation of Self-Heating in AlGaN/GaN HEMTs on Si, SiC, and Diamond Substrates. IEEE Trans. Electron. Devices 2020, 67, 5415–5420. [Google Scholar] [CrossRef]
- Belkacemi, K.; Hocine, R. Efficient 3D-TLM Modeling and Simulation for the Thermal Management of Microwave AlGaN/GaN HEMT Used in High Power Amplifiers SSPA. J. Low Power Electron. Appl. 2018, 8, 23. [Google Scholar] [CrossRef]
- Lundh, J.S.; Chatterjee, B.; Song, Y.; Baca, A.G.; Kaplar, R.J.; Beechem, T.E.; Allerman, A.A.; Armstrong, A.M.; Klein, B.A.; Bansal, A.; et al. Multidimensional Thermal Analysis of an Ultrawide Bandgap AlGaN Channel High Electron Mobility Transistor. Appl. Phys. Lett. 2019, 115, 153503. [Google Scholar] [CrossRef]
- Chatterjee, B.; Dundar, C.; Beechem, T.E.; Heller, E.; Kendig, D.; Kim, H.; Donmezer, N.; Choi, S. Nanoscale Electro-Thermal Interactions in AlGaN/GaN High Electron Mobility Transistors. J. Appl. Phys. 2020, 127, 044502. [Google Scholar] [CrossRef]
- He, Y.; Huang, Z.; Zhang, M.; Wu, M.; Mi, M.; Wang, C.; Yang, L.; Zhang, C.; Guo, L.; Ma, X.; et al. Temperature-Dependent Characteristics of AlGaN/GaN Nanowire Channel High Electron Mobility Transistors. Phys. Status Solidi Appl. Mater. Sci. 2019, 216, 1900396. [Google Scholar] [CrossRef]
- Tsao, J.Y.; Chowdhury, S.; Hollis, M.A.; Jena, D.; Johnson, N.M.; Jones, K.A.; Kaplar, R.J.; Rajan, S.; Van de Walle, C.G.; Bellotti, E.; et al. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Adv. Electron. Mater. 2018, 4, 1600501. [Google Scholar] [CrossRef] [Green Version]
- Jang, K.-W.; Hwang, I.-T.; Kim, H.-J.; Lee, S.-H.; Lim, J.-W.; Kim, H.-S. Thermal Analysis and Operational Characteristics of an AlGaN/GaN High Electron Mobility Transistor with Copper-Filled Structures: A Simulation Study. Micromachines 2020, 11, 53. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Xie, Z.; Chen, D.; Lu, H.; Zhang, R.; Zheng, Y. Effects of Dissipative Substrate on the Performances of Enhancement Mode AlInN/GaN HEMTs. Int. J. Numer. Model. Electron. Netw. Devices Fields 2019, 32, e2482. [Google Scholar] [CrossRef] [Green Version]
- Borga, M.; Meneghini, M.; Stoffels, S.; Li, X.; Posthuma, N.; Van Hove, M.; Decoutere, S.; Meneghesso, G.; Zanoni, E. Impact of Substrate Resistivity on the Vertical Leakage, Breakdown, and Trapping in GaN-on-Si E-Mode HEMTs. IEEE Trans. Electron. Devices 2018, 65, 2765–2770. [Google Scholar] [CrossRef]
- Arreola-Pina, A.S.; Mimila-Arroyo, J. Thermal Reliability of Deuterated AlGaN/GaN HEMTs. Mater. Sci. Semicond. Process. 2021, 123, 105482. [Google Scholar] [CrossRef]
- Xing, W.; Liu, Z.; Qiu, H.; Ranjan, K.; Gao, Y.; Ng, G.I.; Palacios, T. InAlN/GaN HEMTs on Si with High FT of 250 GHz. IEEE Electron. Device Lett. 2018, 39, 75–78. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, T.; Li, C.; Tadjer, M.J.; Anderson, T.J.; Hite, J.K.; Mastro, M.A.; Eddy, C.R.; Hobart, K.D.; Feigelson, B.N.; et al. Defect Characterization of Multicycle Rapid Thermal Annealing Processed P-GaN for Vertical Power Devices. ECS J. Solid State Sci. Technol. 2019, 8, P70–P76. [Google Scholar] [CrossRef]
- Cooper, J.A.; Morisette, D.T. Performance Limits of Vertical Unipolar Power Devices in GaN and 4H-SiC. IEEE Electron. Device Lett. 2020, 41, 892–895. [Google Scholar] [CrossRef]
- Guacci, M.; Bortis, D.; Kolar, J.W. On-State Voltage Measurement of Fast Switching Power Semiconductors. CPSS Trans. Power Electron. Appl. 2018, 3, 163–176. [Google Scholar] [CrossRef]
- Zulauf, G.; Park, S.; Liang, W.; Surakitbovorn, K.N.; Rivas-Davila, J. COSS Losses in 600 v GaN Power Semiconductors in Soft-Switched, High- and Very-High-Frequency Power Converters. IEEE Trans. Power Electron. 2018, 33, 10748–10763. [Google Scholar] [CrossRef]
- Nigam, A.; Bhat, T.N.; Rajamani, S.; Dolmanan, S.B.; Tripathy, S.; Kumar, M. Effect of Self-Heating on Electrical Characteristics of AlGaN/ GaN HEMT on Si (111) Substrate. AIP Adv. 2017, 7, 085015. [Google Scholar] [CrossRef]
- Narang, K.; Bag, R.K.; Singh, V.K.; Pandey, A.; Saini, S.K.; Khan, R.; Arora, A.; Padmavati, M.V.G.; Tyagi, R.; Singh, R. Improvement in Surface Morphology and 2DEG Properties of AlGaN/GaN HEMT. J. Alloys Compd. 2020, 815, 152283. [Google Scholar] [CrossRef]
- Huang, Y.C.; Chiu, H.C.; Kao, H.L.; Wang, H.C.; Liu, C.H.; Huang, C.R.; Chen, S.W. High Thermal Dissipation of Normally off P-GaN Gate AlGaN/GaN HEMTs on 6-Inch N-Doped Low-Resistivity SiC Substrate. Micromachines 2021, 12, 509. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-R.; Chiu, H.-C.; Liu, C.-H.; Wang, H.-C.; Kao, H.-L.; Chen, C.-T.; Chang, K.-J. Characteristic Analysis of AlGaN/GaN HEMT with Composited Buffer Layer on High-Heat Dissipation Poly-AlN Substrates. Membranes 2021, 11, 848. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Koh, Y.R.; Mamun, A.; Shi, J.; Bai, T.; Huynh, K.; Yates, L.; Liu, Z.; Li, R.; Lee, E.; et al. Experimental Observation of High Intrinsic Thermal Conductivity of AlN. Phys. Rev. Mater. 2020, 4, 044602. [Google Scholar] [CrossRef]
- Chang, S.-J.; Cho, K.-J.; Lee, S.-Y.; Jeong, H.-H.; Lee, J.-H.; Jung, H.-W.; Bae, S.-B.; Choi, I.-G.; Kim, H.-C.; Ahn, H.-K.; et al. Substrate Effects on the Electrical Properties in GaN-Based High Electron Mobility Transistors. Crystals 2021, 11, 1414. [Google Scholar] [CrossRef]
- Zhao, M.; Tang, X.; Huo, W.; Han, L.; Deng, Z.; Jiang, Y.; Wang, W.; Chen, H.; Du, C.; Jia, H. Characteristics of AlGaN/GaN High Electron Mobility Transistors on Metallic Substrate. Chin. Phys. B 2020, 29, 048104. [Google Scholar] [CrossRef]
- Chang, S.-J.; Jung, H.-W.; Do, J.-W.; Cho, K.J.; Kim, J.-J.; Jang, Y.J.; Yoon, H.S.; Ahn, H.-K.; Min, B.-G.; Kim, H.; et al. Enhanced Carrier Transport Properties in GaN-Based Metal-Insulator-Semiconductor High Electron Mobility Transistor with SiN/Al2O3 Bi-Layer Passivation. ECS J. Solid State Sci. Technol. 2018, 7, N86–N90. [Google Scholar] [CrossRef]
- Chernykh, M.Y.; Andreev, A.A.; Ezubchenko, I.S.; Chernykh, I.A.; Mayboroda, I.O.; Kolobkova, E.M.; Khrapovitskaya, Y.V.; Grishchenko, J.V.; Perminov, P.A.; Sedov, V.S.; et al. GaN-Based Heterostructures with CVD Diamond Heat Sinks: A New Fabrication Approach towards Efficient Electronic Devices. Appl. Mater. Today 2022, 26, 101338. [Google Scholar] [CrossRef]
- Liu, T.; Kong, Y.; Wu, L.; Guo, H.; Zhou, J.; Kong, C.; Chen, T. 3-Inch GaN-on-Diamond HEMTs with Device-First Transfer Technology. IEEE Electron. Device Lett. 2017, 38, 1417–1420. [Google Scholar] [CrossRef]
- Gerrer, T.; Czap, H.; Maier, T.; Benkhelifa, F.; Müller, S.; Nebel, C.E.; Waltereit, P.; Quay, R.; Cimalla, V. 3 GHz RF Measurements of AlGaN/GaN Transistors Transferred from Silicon Substrates onto Single Crystalline Diamond. AIP Adv. 2019, 9, 125106. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Kong, Y.; Chen, T. Thermal Simulation of High Power GaN-on-Diamond Substrates for HEMT Applications. Diam. Relat. Mater. 2017, 73, 260–266. [Google Scholar] [CrossRef]
- Weng, Y.C.; Lin, Y.C.; Hsu, H.T.; Kao, M.L.; Huang, H.Y.; Ueda, D.; Ha, M.T.H.; Yang, C.Y.; Maa, J.S.; Chang, E.Y.; et al. A Novel GaN:C Millimeter-Wave HEMT with AlGaN Electron-Blocking Layer. Materials 2022, 15, 703. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Chiu, H.C.; Hsu, W.C.; Liu, C.M.; Chuang, C.Y.; Liu, J.Z.; Huang, Y.L. The Impact of AlxGa1-XN Back Barrier in AlGaN/GaN High Electron Mobility Transistors (HEMTs) on Six-Inch MCZ Si Substrate. Coatings 2020, 10, 570. [Google Scholar] [CrossRef]
- Chvála, A.; Marek, J.; Príbytný, P.; Šatka, A.; Stoffels, S.; Posthuma, N.; Decoutere, S.; Donoval, D. Analysis of Multifinger Power HEMTs Supported by Effective 3-D Device Electrothermal Simulation. Microelectron. Reliab. 2017, 78, 148–155. [Google Scholar] [CrossRef]
- Anderson, T.J.; Koehler, A.D.; Tadjer, M.J.; Hite, J.K.; Nath, A.; Mahadik, N.A.; Aktas, O.; Odnoblyudov, V.; Basceri, C.; Hobart, K.D.; et al. Electrothermal Evaluation of Thick GaN Epitaxial Layers and AlGaN/GaN High-Electron-Mobility Transistors on Large-Area Engineered Substrates. Appl. Phys. Express 2017, 10, 126501. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Chen, Y.Y.; Yeh, P.H.; Horng, R.H. Thermal Management of GaN-on-Si High Electron Mobility Transistor by Copper Filled Micro-Trench Structure. Sci. Rep. 2019, 9, 19691–19699. [Google Scholar] [CrossRef]
- Jia, Y.; Xu, Y.; Guo, Y. A Universal Scalable Thermal Resistance Model for Compact Large-Signal Model of AlGaN/GaN HEMTs. IEEE Trans. Microw. Theory Tech. 2018, 66, 4419–4429. [Google Scholar] [CrossRef]
- Mitterhuber, L.; Hammer, R.; Dengg, T.; Spitaler, J. Thermal Characterization and Modelling of AlGaN-GaN Multilayer Structures for HEMT Applications. Energies 2020, 13, 2363. [Google Scholar] [CrossRef]
- Pribahsnik, F.P.; Nelhiebel, M.; Mataln, M.; Bernardoni, M.; Prechtl, G.; Altmann, F.; Poppitz, D.; Lindemann, A. Exploring the Thermal Limit of GaN Power Devices under Extreme Overload Conditions. Microelectron. Reliab. 2017, 76–77, 304–308. [Google Scholar] [CrossRef]
- Shamsir, S.; Garcia, F.; Islam, S.K. Modeling of Enhancement-Mode GaN-GIT for High-Power and High-Temperature Application. IEEE Trans. Electron. Devices 2020, 67, 588–594. [Google Scholar] [CrossRef]
- Ranjan, K.; Arulkumaran, S.; Ng, G.I.; Sandupatla, A. Investigation of Self-Heating Effect on DC and RF Performances in AlGaN/GaN HEMTs on CVD-Diamond. IEEE J. Electron. Devices Soc. 2019, 7, 1264–1269. [Google Scholar] [CrossRef]
- Hu, H.; Tang, B.; Wan, H.; Sun, H.; Zhou, S.; Dai, J.; Chen, C.; Liu, S.; Guo, L.J. Boosted Ultraviolet Electroluminescence of InGaN/AlGaN Quantum Structures Grown on High-Index Contrast Patterned Sapphire with Silica Array. Nano Energy 2020, 69, 104427. [Google Scholar] [CrossRef]
- Ronchi, N.; Bakeroot, B.; You, S.; Hu, J.; Stoffels, S.; Wu, T.L.; De Jaeger, B.; Decoutere, S. Optimization of the Source Field-Plate Design for Low Dynamic RDS-ON Dispersion of AlGaN/GaN MIS-HEMTs. Phys. Status Solidi Appl. Mater. Sci. 2017, 214, 1600601. [Google Scholar] [CrossRef]
- Ho, S.Y.; Lee, C.H.; Tzou, A.J.; Kuo, H.C.; Wu, Y.R.; Huang, J.J. Suppression of Current Collapse in Enhancement Mode GaN-Based HEMTs Using an AlGaN/GaN/AlGaN Double Heterostructure. IEEE Trans. Electron. Devices 2017, 64, 1505–1510. [Google Scholar] [CrossRef]
- Rawal, D.S.; Amit; Sharma, S.; Kapoor, S.; Laishram, R.; Vinayak, S. Current Collapse Scaling in GaN/AlGaN/SiC High Electron Mobility Transistors. Solid State Electron. Lett. 2019, 1, 30–37. [Google Scholar] [CrossRef]
- Zou, H.; Yang, L.-A.; Ma, X.-H.; Hao, Y. The Dual-Suppression of Peak Electric Field in AlGaN/GaN HEMT with Sandwich Structure. Superlattices Microstruct. 2021, 152, 106843. [Google Scholar] [CrossRef]
- Wong, J.; Shinohara, K.; Corrion, A.L.; Brown, D.F.; Carlos, Z.; Williams, A.; Tang, Y.; Robinson, J.F.; Khalaf, I.; Fung, H.; et al. Novel Asymmetric Slant Field Plate Technology for High-Speed Low-Dynamic Ron E/D-Mode GaN HEMTs. IEEE Electron. Device Lett. 2017, 38, 95–98. [Google Scholar] [CrossRef]
- Murugapandiyan, P.; Hasan, M.T.; Rajya Lakshmi, V.; Wasim, M.; Ajayan, J.; Ramkumar, N.; Nirmal, D. Breakdown Voltage Enhancement of Gate Field Plate Al0.295Ga0.705N/GaN HEMTs. Int. J. Electron. 2021, 108, 1273–1287. [Google Scholar] [CrossRef]
- Wang, A.; Zeng, L.; Wang, W. Simulation of Gate Leakage Current of AlGaN/GaN HEMTs: Effects of the Gate Edges and Self-Heating. ECS J. Solid State Sci. Technol. 2017, 6, S3025–S3029. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Wei, K.; Huang, S.; Chen, X.; Zhang, Y.; Zheng, Y.; Liu, G.; Yuan, T.; Wang, X.; et al. Suppression of Gate Leakage Current in Ka-Band AlGaN/GaN HEMT with 5-Nm SiN Gate Dielectric Grown by Plasma-Enhanced ALD. IEEE Trans. Electron. Devices 2021, 68, 49–52. [Google Scholar] [CrossRef]
- Rawal, A.D.S.; Sharma, S.; Kapoor, S.; Liashram, R.; Chaubey, R.K.; Vinayak, S.; Sharma, R.K. Design and Fabrication of Multi-Finger Field Plate for Enhancement of AlGaN/GaN HEMT Breakdown Voltage. Def. Sci. J. 2018, 68, 290–294. [Google Scholar] [CrossRef]
- Tsurumaki, R.; Noda, N.; Horio, K. Similarities of Lag Phenomena and Current Collapse in Field-Plate AlGaN/GaN HEMTs with Different Types of Buffer Layers. Microelectron. Reliab. 2017, 73, 36–41. [Google Scholar] [CrossRef]
- Augustine Fletcher, A.S.; Nirmal, D.; Ajayan, J.; Arivazhagan, L. Analysis of AlGaN/GaN HEMT Using Discrete Field Plate Technique for High Power and High Frequency Applications. AEU-Int. J. Electron. Commun. 2019, 99, 325–330. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, H.; Chen, Z.; Yue, W.; Li, Y.; Zhang, L.; Liu, S.; Sun, W. Super Field Plate Technique That Can Provide Charge Balance Effect for Lateral Power Devices without Occupying Drift Region. IEEE Trans. Electron. Devices 2020, 67, 2218–2222. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y.; Wang, F.; Wang, C.; Zhang, Y.; Yan, B.; Xu, R. Improved Quasi-Physical Zone Division Model with Analytical Electrothermal Ids Model for AlGaN/GaN Heterojunction High Electron Mobility Transistors. Int. J. Numer. Model. Electron. Netw. Devices Fields 2020, 33, e2630. [Google Scholar] [CrossRef]
- Kabemura, T.; Ueda, S.; Kawada, Y.; Horio, K. Enhancement of Breakdown Voltage in AlGaN/GaN HEMTs: Field Plate Plus High-k Passivation Layer and High Acceptor Density in Buffer Layer. IEEE Trans. Electron. Devices 2018, 65, 3848–3854. [Google Scholar] [CrossRef]
- Liao, B.; Zhou, Q.; Qin, J.; Wang, H. Simulation of AlGaN/GaN HEMTs’ Breakdown Voltage Enhancement Using Gate Field-Plate, Source Field-Plate and Drain Field Plate. Electronics 2019, 8, 406. [Google Scholar] [CrossRef] [Green Version]
- Nirmal, D.; Arivazhagan, L.; Fletcher, A.S.A.; Ajayan, J.; Prajoon, P. Current Collapse Modeling in AlGaN/GaN HEMT Using Small Signal Equivalent Circuit for High Power Application. Superlattices Microstruct. 2018, 113, 810–820. [Google Scholar] [CrossRef]
- Wu, W.H.; Lin, Y.C.; Chin, P.C.; Hsu, C.C.; Lee, J.H.; Liu, S.C.; Maa, J.S.; Iwai, H.; Chang, E.Y.; Hsu, H.T. Reliability Improvement in GaN HEMT Power Device Using a Field Plate Approach. Solid State Electron. 2017, 133, 64–69. [Google Scholar] [CrossRef]
- Chugh, N.; Kumar, M.; Haldar, S.; Bhattacharya, M.; Gupta, R.S. Applicability of Field Plate in Double Channel GaN HEMT for Radio-Frequency and Power-Electronic Applications. Silicon 2021, 14, 1029–1038. [Google Scholar] [CrossRef]
- Iwamoto, T.; Akiyama, S.; Horio, K. Passivation-Layer Thickness and Field-Plate Optimization to Obtain High Breakdown Voltage in AlGaN/GaN HEMTs with Short Gate-to-Drain Distance. Microelectron. Reliab. 2021, 121, 114153. [Google Scholar] [CrossRef]
- Kwak, H.T.; Chang, S.B.; Kim, H.J.; Jang, K.W.; Yoon, H.S.; Lee, S.H.; Lim, J.W.; Kim, H.S. Operational Improvement of AlGaN/GaN High Electron Mobility Transistor by an Inner Field-Plate Structure. Appl. Sci. 2018, 8, 974. [Google Scholar] [CrossRef] [Green Version]
- Bhat, A.M.; Shafi, N.; Sahu, C.; Periasamy, C. Analysis of AlGaN/GaN HEMT and Its Operational Improvement Using a Grated Gate Field Plate. J. Electron. Mater. 2021, 50, 6218–6227. [Google Scholar] [CrossRef]
- Augustine Fletcher, A.S.; Nirmal, D.; Arivazhagan, L.; Ajayan, J.; Varghese, A. Enhancement of Johnson Figure of Merit in III-V HEMT Combined with Discrete Field Plate and AlGaN Blocking Layer. Int. J. RF Microw. Comput. Eng. 2020, 30, e22040. [Google Scholar] [CrossRef]
- Fletcher, A.S.A.; Nirmal, D.; Ajayan, J.; Arivazhagan, L. An Intensive Study on Assorted Substrates Suitable for High JFOM AlGaN/GaN HEMT. Silicon 2021, 13, 1591–1598. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, K.; Ma, X.; Zhang, Y.C.; Lei, T. Millimeter-Wave AlGaN/GaN HEMT Breakdown Voltage Enhancement by a Recessed Float Field Plate. Appl. Phys. Express 2019, 12, 054007. [Google Scholar] [CrossRef]
- Neha; Kumari, V.; Gupta, M.; Saxena, M. Temperature Based Analysis of 3-Step Field Plate AlGaN/GaN HEMT Using Numerical Simulation. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019, 10, 045006. [Google Scholar] [CrossRef]
- Neha; Kumari, V.; Gupta, M.; Saxena, M. TCAD-Based Optimization of Field Plate Length & Passivation Layer of AlGaN/GaN HEMT for Higher Cut-Off Frequency & Breakdown Voltage. IETE Tech. Rev. 2020, 39, 63–71. [Google Scholar] [CrossRef]
- Prasannanjaneyulu, B.; Karmalkar, S. Relative Effectiveness of High-k Passivation and Gate-Connected Field Plate Techniques in Enhancing GaN HEMT Breakdown. Microelectron. Reliab. 2020, 110, 113698. [Google Scholar] [CrossRef]
- Hao, R.; Li, W.; Fu, K.; Yu, G.; Song, L.; Yuan, J.; Li, J.; Deng, X.; Zhang, X.; Zhou, Q.; et al. Breakdown Enhancement and Current Collapse Suppression by High-Resistivity GaN Cap Layer in Normally-Off AlGaN/GaN HEMTs. IEEE Electron. Device Lett. 2017, 38, 1567–1570. [Google Scholar] [CrossRef]
- Soni, A.; Ajay; Shrivastava, M. Novel Drain-Connected Field Plate GaN HEMT Designs for Improved VBD-RON Tradeoff and RF PA Performance. IEEE Trans. Electron. Devices 2020, 67, 1718–1725. [Google Scholar] [CrossRef]
- Xia, X.; Guo, Z.; Sun, H. Study of Normally-Off AlGaN/GaN HEMT with Microfield Plate for Improvement of Breakdown Voltage. Micromachines 2021, 12, 1318. [Google Scholar] [CrossRef] [PubMed]
- Dundar, C.; Kara, D.; Donmezer, N. The Effects of Gate-Connected Field Plates on Hotspot Temperatures of AlGaN/GaN HEMTs. IEEE Trans. Electron. Devices 2020, 67, 57–62. [Google Scholar] [CrossRef]
- Sun, S.X.; Zhong, Y.H.; Mei, H.Y.; Yao, R.X.; Chen, F.J.; Li, Y.X.; Hu, Y.F. The Effect of High-k Passivation Layer on off-State Breakdown Voltage of Algaas/Ingaas Hemt. J. Ovonic Res. 2021, 17, 137–145. [Google Scholar]
- Gao, S.; Zhou, Q.; Liu, X.; Wang, H. Breakdown Enhancement and Current Collapse Suppression in AlGaN/GaN HEMT by NiOX/SiNX and Al2O3/SiNX as Gate Dielectric Layer and Passivation Layer. IEEE Electron. Device Lett. 2019, 40, 1921–1924. [Google Scholar] [CrossRef]
- Geng, K.; Chen, D.; Zhou, Q.; Wang, H. AlGaN/GaN MIS-HEMT with PECVD SiN x, SiON, SiO2 as Gate Dielectric and Passivation Layer. Electronics 2018, 7, 416. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Huang, H.; Wang, R.; Liu, Y.; Sun, N.; Li, F.; Tao, P.; Ren, Y.; Song, S.; Wang, H.; et al. Effects of SiON/III-Nitride Interface Properties on Device Performances of GaN-Based Power Field-Effect Transistors. J. Phys. D Appl. Phys. 2020, 54, 025109. [Google Scholar] [CrossRef]
- Babaya, A.; Saadi, A.; Bri, S. New Investigation of an E-Mode Metal-Insulator-Semiconductor AlInN/AlN/GaN HEMT with an Au-T-Gate. Telkomnika 2021, 19, 531–539. [Google Scholar] [CrossRef]
- Seidel, S.; Schmid, A.; Miersch, C.; Schubert, J.; Heitmann, J. AlGaN/GaN MISHEMTs with Epitaxially Grown GdScO3 as High-κ Dielectric. Appl. Phys. Lett. 2021, 118, 052902. [Google Scholar] [CrossRef]
- Shi, Y.T.; Lu, H.; Xu, W.Z.; Zeng, C.K.; Ren, F.F.; Ye, J.D.; Zhou, D.; Chen, D.J.; Zhang, R.; Zheng, Y. High-k HfO2-Based AlGaN/GaN MIS-HEMTs with Y2O3 Interfacial Layer for High Gate Controllability and Interface Quality. IEEE J. Electron Devices Soc. 2020, 8, 15–19. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, J.; Huang, X.; Yao, J.; Zhang, J.; Guo, Y. Analysis of Interface Properties in AlGaN/GaN MIS-HEMTs with HfO2and SiNxGate Dielectric. In Proceedings of the 2020 IEEE International Conference on Power and Energy Systems (ICPES), Chengdu, China, 25–27 December 2020. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.S.; Kim, J.G.; Ahn, W.H.; Bae, Y.; Lee, J.H. Effect of Gate Dielectrics on Characteristics of High-Energy Proton-Irradiated AlGaN/GaN MISHEMTs. Radiat. Phys. Chem. 2021, 184, 109473. [Google Scholar] [CrossRef]
- Li, S.; Hu, Q.; Wang, X.; Li, T.; Li, X.; Wu, Y. Improved Interface Properties and Dielectric Breakdown in Recessed AlGaN/GaN MOS-HEMTs Using HfSiOx as Gate Dielectric. IEEE Electron Device Lett. 2019, 40, 295–298. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, X.; Zhang, P.; Zhang, H.; Zhang, L.; Deng, X.; Fan, Y.; Yu, G.; Dong, Z.; Fu, H.; et al. Low Threshold Voltage Shift in AlGaN/GaN MIS-HEMTs on Si Substrate Using SiNx/SiON as Composite Gate Dielectric. Electronics 2022, 11, 895. [Google Scholar] [CrossRef]
- Hashizume, T.; Nishiguchi, K.; Kaneki, S.; Kuzmik, J.; Yatabe, Z. State of the Art on Gate Insulation and Surface Passivation for GaN-Based Power HEMTs. Mater. Sci. Semicond. Process. 2018, 78, 85–95. [Google Scholar] [CrossRef]
- Gupta, A.; Chatterjee, N.; Kumar, P.; Pandey, S. Effect of Surface Passivation on the Electrical Characteristics of Nanoscale AlGaN/GaN HEMT. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Secunderabad, India, 3–4 July 2017. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, Y.; Liang, Y.; Zhang, Y.; Liu, W.; Wen, H.; Mitrovic, I.Z.; Zhao, C. Effect of High-k Passivation Layer on High Voltage Properties of GaN Metal-Insulator-Semiconductor Devices. IEEE Access 2020, 8, 95642–95649. [Google Scholar] [CrossRef]
- Nakamura, K.; Hanawa, H.; Horio, K. Analysis of Breakdown Voltages in AlGaN/GaN HEMTs with Low-Double Passivation Layers. IEEE Trans. Device Mater. Reliab. 2019, 19, 298–303. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, K.; Ma, X.H.; Hou, B.; Liu, G.G.; Zhang, Y.C.; Wang, X.H.; Zheng, Y.K.; Huang, S.; Li, Y.K.; et al. Reduced Reverse Gate Leakage Current for GaN HEMTs with 3 Nm Al/40 Nm SiN Passivation Layer. Appl. Phys. Lett. 2019, 114, 13503. [Google Scholar] [CrossRef]
- Murugapandiyan, P.; Nirmal, D.; Tanvir Hasan, M.; Varghese, A.; Ajayan, J.; Augustine Fletcher, A.S.; Ramkumar, N. Influence of AlN Passivation on Thermal Performance of AlGaN/GaN High-Electron Mobility Transistors on Sapphire Substrate: A Simulation Study. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2021, 273, 115449. [Google Scholar] [CrossRef]
- Du, J.; Jiang, Z.; Bai, Z.; Pan, P.; Yu, Q. Design and Simulation of High Breakdown Voltage AlGaN/GaN HEMTs with a Charged Passivation Layer for Microwave Power Applications. J. Comput. Electron. 2017, 16, 741–747. [Google Scholar] [CrossRef]
- Romero, M.F.; Bosca, A.; Pedros, J.; Martinez, J.; Fandan, R.; Palacios, T.; Calle, F. Impact of 2D-Graphene on SiN Passivated AlGaN/GaN MIS-HEMTs under Mist Exposure. IEEE Electron. Device Lett. 2017, 38, 1441–1444. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Fu, X.; Wang, Y.; Guo, J.; Shen, J.; Hu, S. Breakdown Voltage Improvement of Enhancement Mode AlGaN/GaN HEMT by a Novel Step-Etched GaN Buffer Structure. Results Phys. 2021, 29, 104768. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Wang, S.; Chen, C.; Wang, Z.; Yao, Y. Design and Optimization on a Novelhigh-Performance Ultra-Thin Barrier AlGaN/GaN Power HEMT with Local Charge Compensation Trench. Appl. Sci. 2019, 9, 3054. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.; Yang, L.A.; Ma, X.H.; Hao, Y. Effects of Notch Structures on DC and RF Performances of AlGaN/GaN High Electron Mobility Transistors. Chin. Phys. B 2021, 30, 040502. [Google Scholar] [CrossRef]
- Toprak, A.; Osmanoǧlu, S.; Oztürk, M.; Yilmaz, D.; Cengiz, O.; Şen, O.; Bütün, B.; Ozcan, Ş.; Ozbay, E. Effect of Gate Structures on the DC and RF Performance of AlGaN/GaN HEMTs. Semicond. Sci. Technol. 2018, 33, 125017. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Matioli, E. Slanted Tri-Gates for High-Voltage GaN Power Devices. IEEE Electron. Device Lett. 2017, 38, 1305–1308. [Google Scholar] [CrossRef]
- Colangeli, S.; Ciccognani, W.; Longhi, P.E.; Pace, L.; Poulain, J.; Leblanc, R.; Limiti, E. Linear Characterization and Modeling of GaN-on-Si HEMT Technologies with 100 Nm and 60 Nm Gate Lengths. Electronics 2021, 10, 134. [Google Scholar] [CrossRef]
- Jang, Y.I.; Lee, S.H.; Seo, J.H.; Yoon, Y.J.; Kwon, R.H.; Cho, M.S.; Kim, B.G.; Yoo, G.M.; Lee, J.-H.; Kang, I.M. Design and Analysis of AlGaN/GaN MIS HEMTs with a Dual-Metal-Gate Structure. J. Semicond. Technol. Sci. 2017, 17, 223–229. [Google Scholar] [CrossRef]
- Wu, C.H.; Chen, J.Y.; Han, P.C.; Lee, M.W.; Yang, K.S.; Wang, H.C.; Chang, P.C.; Luc, Q.H.; Lin, Y.C.; Dee, C.F.; et al. Normally-Off Tri-Gate GaN MIS-HEMTs with 0.76 MΩ·cm2 Specific On-Resistance for Power Device Applications. IEEE Trans. Electron. Devices 2019, 66, 3441–3446. [Google Scholar] [CrossRef]
- Kashem, M.T.B.; Subrina, S. Analytical Modeling of Channel Potential and Threshold Voltage of Triple Material Gate AlGaN/GaN HEMT Including Trapped and Polarization-Induced Charges. Int. J. Numer. Model. Electron. Netw. Devices Fields 2019, 32, e2476. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.C.; Zeng, F.; He, M.; Wang, Q.; Chan, M.; Yu, H. Quasi-Normally-Off AlGaN/GaN HEMTs with SiN Stress Liner and Comb Gate for Power Electronics Applications. IEEE J. Electron. Devices Soc. 2020, 8, 1138–1144. [Google Scholar] [CrossRef]
- Kumar, S.; Agrawal, V.K. Effects of Combined Gate and Ohmic Recess on GaN HEMTs. Perspect. Sci. 2016, 8, 156–158. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, M.; Liu, Z.; Piedra, D.; Hu, J.; Gao, X.; Palacios, T. Trench Formation and Corner Rounding in Vertical GaN Power Devices. Appl. Phys. Lett. 2017, 110, 193506. [Google Scholar] [CrossRef]
- Yang, J.X.; Lin, D.J.; Wu, Y.R.; Huang, J.J. Deep Source Metal Trenches in GaN-On-Si HEMTs for Relieving Current Collapse. IEEE J. Electron. Devices Soc. 2021, 9, 557–563. [Google Scholar] [CrossRef]
- Duffy, S.J.; Benbakhti, B.; Mattalah, M.; Zhang, W.; Bouchilaoun, M.; Boucherta, M.; Kalna, K.; Bourzgui, N.; Maher, H.; Soltani, A. Low Source/Drain Contact Resistance for AlGaN/GaN HEMTs with High Al Concentration and Si-HP [111] Substrate. ECS J. Solid State Sci. Technol. 2017, 6, S3040–S3043. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Jiang, C.; Huang, X.; Du, C.; Zhao, Z.; Jing, L.; Li, X.; Han, S.; Sun, J.; Pu, X.; et al. Electrical Transportation and Piezotronic-Effect Modulation in AlGaN/GaN MOS HEMTs and Unpassivated HEMTs. Nano Energy 2017, 39, 53–59. [Google Scholar] [CrossRef]
- Baca, A.G.; Armstrong, A.M.; Klein, B.A.; Allerman, A.A.; Douglas, E.A.; Kaplar, R.J. Al-Rich AlGaN Based Transistors. J. Vac. Sci. Technol. A 2020, 38, 020803. [Google Scholar] [CrossRef] [Green Version]
- Jeon, D.Y.; Kim, D.K.; Park, S.J.; Koh, Y.; Cho, C.Y.; Kim, G.T.; Park, K.H. Effects of Series Resistance and Interface Properties on the Operation of AlGaN/GaN High Electron Mobility Transistors. Microelectron. Eng. 2018, 199, 40–44. [Google Scholar] [CrossRef]
- Mahajan, S.S.; Dhaul, A.; Laishram, R.; Kapoor, S.; Vinayak, S.; Sehgal, B.K. Micro-Structural Evaluation of Ti/Al/Ni/Au Ohmic Contacts with Different Ti/Al Thicknesses in AlGaN/GaN HEMTs. Mater. Sci. Eng. B 2014, 183, 47–53. [Google Scholar] [CrossRef]
- Hou, M.; Xie, G.; Sheng, K. Mechanism of Ti/Al/Ni/Au Ohmic Contacts to AlGaN/GaN Heterostructures via Laser Annealing. Chin. Phys. B 2019, 28, 037302. [Google Scholar] [CrossRef]
- Hwang, Y.-H.; Ahn, S.; Dong, C.; Zhu, W.; Kim, B.-J.; Le, L.; Ren, F.; Lind, A.G.; Dahl, J.; Jones, K.S.; et al. Degradation Mechanisms of Ti/Al/Ni/Au-Based Ohmic Contacts on AlGaN/GaN HEMTs. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2015, 33, 031212. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, S.; Bao, Q.; Wang, X.; Wei, K.; Zheng, Y.; Li, Y.; Zhao, C.; Liu, X.; Zhou, Q.; et al. Mechanism of Ti/Al/Ti/W Au-Free Ohmic Contacts to AlGaN/GaN Heterostructures via Pre-Ohmic Recess Etching and Low Temperature Annealing. Appl. Phys. Lett. 2015, 107, 262109. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Q.; Gao, S.; Liu, X.; Wang, H. Ti/Al/Ti/TiW Au-Free Low Temperature Ohmic Contacts for Un-Doped AlGaN/GaN HEMTs. Solid State Electron. 2018, 147, 1–5. [Google Scholar] [CrossRef]
- Gao, S.; Liu, X.; Chen, J.; Xie, Z.; Zhou, Q.; Wang, H. High Breakdown-Voltage GaN-Based HEMTs on Silicon with Ti/Al/Ni/Ti Ohmic Contacts. IEEE Electron. Device Lett. 2021, 42, 481–484. [Google Scholar] [CrossRef]
- Constant, A.; Claeys, E.; Baele, J.; Coppens, P.; De Pestel, F. The Role of AlGaN/GaN Heterostructure Properties in Barrier Height Variation of Au-Free Ohmic Contacts. Mater. Sci. Semicond. Process. 2021, 129, 105806. [Google Scholar] [CrossRef]
- Yan, W.; Zhang, R.; Du, Y.; Han, W.; Yang, F. Analysis of the Ohmic Contacts of Ti/Al/Ni/Au to AlGaN/GaN HEMTs by the Multi-Step Annealing Process. J. Semicond. 2012, 33, 06400. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, J.; Li, Q.; Song, X.; Tan, Z.; Li, J. Effects of Multi-Layer Ti/Al Electrode and Ohmic Groove Etching on Ohmic Characteristics of AlGaN/GaN HEMT Devices. AIP Adv. 2021, 11, 115202. [Google Scholar] [CrossRef]
- Chen, D.; Wan, L.; Li, J.; Liu, Z.; Li, G. Ohmic Contact to AlGaN/GaN HEMT with Electrodes in Contact with Heterostructure Interface. Solid State Electron. 2019, 151, 60–64. [Google Scholar] [CrossRef]
Parameters | Unit | AlxGa1-xN | GaN |
---|---|---|---|
Electron mobility (µn) | cm2 V−1 s−1 | 300.0–985.5 | 800–1350 |
Hole mobility (µp) | cm2 V−1 s−1 | 10.0–13.3 | 10.0–22.0 |
Energy band gap (Eg) | eV | 3.87–5.10 | 3.299–3.550 |
Conduction band density of state (Nc) | 1018 cm−3 | 2.07–2.75 | 1.07–2.24 |
Valance band density of state (Nv) | 1019 cm−3 | 1.16–2.06 | 1.16–2.51 |
Electron affinity (χ) | eV | 3.41–4.01 | 4.00–4.31 |
Saturation velocity (Vsat) | 107 cm s−1 | 0.27–1.50 | 1.90–2.70 |
Relative permittivity (ɛ) | - | 8.79–9.55 | 8.90–9.70 |
Al mole concentration (x) | - | 0.26–0.85 | - |
Metal Gate |
Structural Parameters | p-GaN Thickness (nm) | p-GaN Doping (cm−3) | Vth (V) | VBR (V) |
gm,max (mS mm−1) |
Ron (Ω·mm) |
Ids,max (mA mm−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ti/Al/Ti | LG = 2 μm, LGD = 5 μm, LGS = 2 μm | 1400 | - | 2.8 | - | - | - | 400 | [81] |
Ti/Al | LG = 20 μm, WG = 2π⋅65 μm, LSD = 40 μm | 50 | 3 × 1019 | 1.5 | - | - | - | - | [82] |
Mo/Ni | LG = 2.0 μm, LGD = 10 μm, LGS = 1.5 μm | 80 | 3 × 1019 | 1.08 | 560 | 150.0 | 10.7 | 554 | [83] |
Ti/Au | WG = 100 μm, LG = 2 μm, LGD = 15 μm, LGS = 4 μm | 70 | - | 1.2 | - | - | - | - | [84] |
Ni/Au | WG = 60 mm, LG = 4 μm, LGD = 3 μm, LGS = 3 μm | 70 | 4 × 1019 | 2.2 | - | - | 43.6 | 112.5 | [85] |
Zr/Au | WG = 100 μm, LG = 3 μm, LGD = 7 μm, LGS = 2 μm | 80 | - | 1.5 | - | - | - | - | [86] |
Ti/Au | WG = 100 μm, LG = 4 μm, LGD = 6 μm, LGS = 3 μm | 85 | 5 × 1019 | 1.1 | 300 | - | 10.0 | 355 | [87] |
Ni/Au | WG = 0.25 mm, LG = 1.3 μm | 95 | 3 × 1019 | 1.5 | >800 | - | - | 300 | [88] |
Ni/Au | WG = 2 × 150 μm, LG = 1 μm, LGD = 3 μm, LGS = 1 μm | 80 | - | 0.5 | - | 81.5 | 8.2 | 215.9 | [89] |
Ni/Au | WG = 10 μm, LG = 0.7 μm, LGD = LGS = 0.75 μm | 70 | 1 × 1020 | 1.6 | >10 | - | - | - | [90] |
Ni/Au | WG = 100 μm, LG = 3 μm, LGD = 10 μm, LGS = 5 μm | 60 | 4 × 1019 | 1.6 | - | 68.0 | 23.0 | 153 | [91] |
Ni/Au | LG = 3 μm, LGD = 7 μm, LGS = 2 μm | 60 | 3 × 1019 | 2.1 | 218 | - | 5.65 | 272 | [92] |
Ti/Au | WG = 100 μm, LG = 5 μm, LGD = 10 μm, LGS = 3 μm | 100 | 4 × 1019 | 1.86 | 12.05 | - | 12.8 | - | [93] |
Ni/Au | WG = 2 μm, LG = 4 μm, LGD = 15 μm, LGS = 2 μm | 100 | 3 × 1019 | 1.4 | 740 | - | 11.0 | - | [94] |
Barrier Designs | Ion/Ioff | SS (mV dec−1) | gm,max (mS mm−1) | Ids,max (A mm−1) | Vth (V) | Ref. |
---|---|---|---|---|---|---|
Al0.3Ga0.7N/Al0.2Ga0.8N/GaN (Remaining bottom of 5 nm Al0.15Ga0.88N) | 4.8 × 1010 | 87.9 | 7.6 | - | 0.25 | [101] |
Al0.3Ga0.7N/Al0.2Ga0.8N/GaN (Remaining bottom of 3 nm Al0.15Ga0.85N) | 5.5 × 1010 | 229.3 | 71.2 | - | 3.25 | |
Al0.3Ga0.7N/Al0.2Ga0.8N/GaN (Remaining bottom of 5 nm Al0.2Ga0.8N) | 1.2 × 1011 | 80.7 | 39 | 2.9 | ~0 | |
Al0.3Ga0.7N/Al0.2Ga0.8N/GaN (Remaining bottom of 3 nm Al0.2Ga0.8N) | - | 153.1 | 90 | - | 0.5 | |
Al0.25Ga0.7N/Al0.11Ga0.89N/Al0.15Ga0.8N (H = 6 nm) | - | - | 94.4 | 1.06 | 0.99 | [103] |
Al0.25Ga0.7N/Al0.11Ga0.89N/Al0.15Ga0.8N (H = 2.06 nm) | - | - | 61.1 | 0.95 | 2.06 | |
AlN/GaN/AlN/GaN | - | - | 200 | 1.2 | ~−4 | [104] |
AlGaN/GaN/AlGaN/GaN (Fin-shaped structure) | - | - | 245 | ~0.5 | 0.2 | [105] |
Reference Price (USD) | Resistivity (Ω·cm) | |
---|---|---|
LRSiC (6 in) | 1000 | 0.015~0.025 |
HRSiC (6 in) | 300 | 1 × 10−5 |
Parameters | ID at VG = 0.0 V (mA mm−1) | gm,max (mS mm−1) | Max. µ | Max. µ (cm2 V−1 s−1) |
fT (GHz) |
fmax (GHz) | |
---|---|---|---|---|---|---|---|
at VD = 0 V | at VD = 10.0 V | ||||||
Sapphire substrate | 658 | 542 | 220 | 1109 | 408 | 14.8 | 28.6 |
AlN substrate | 717 | 705 | 251 | 1189 | 393 | 16.3 | 31.1 |
Cu film | 776 | 795 | 271 | 1253 | 389 | 16.6 | 32.6 |
LFP (µm) | LG (µm) | LGD (µm) | Passivation Layer | Cap Layer | fT (GHz) | Electric Field (MV cm−1) | Vth (V) | gm,max (mS mm−1) | Ids,max (mA mm−1) | VBR (V) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
0.67 | 0.26 | 2.00 | SiN | - | 41.00 | 0.71 | 0.65 | 780.0 | 1060 | 138 | [173] |
1.75 | 0.40 | - |
SiN HfO2 | - | 40.00 28.00 | - | −4.30 | 434.8 434.0 | 2160 2110 | 872 912 | [174] |
0.60 | 0.70 | - | SiN | - | - | - | - | - | - | 150 | [177] |
0.90 | 0.25 | 2.70 | SiN | GaN | 20.00 | 17.00 | - | 270.0 | 760 | 330 | [179] |
2.00 | 3.00 | 22.00 | - | - | - | 3.00 | - | - | - | 2200 | [183] |
1.00 | 0.25 | 2.70 | SiN | AlN/GaN | - | 2.90 | 0.50 | 175.0 | 900 | 291 | [184] |
1.50 | 1.50 | 5.00 | Si3N4 | - | - | - | −4.00 | 70.0 | 310 | 970 | [19] |
2.00 | 2.00 | 15.00 | SiN | GaN | - | - | −3.50 | 138.0 | - | 365 | [185] |
3.00 | 1.00 | 8.00 | SiN | - | 19.00 | 4.87 | - | - | 3400 | 376 | [186] |
0.30 | 0.30 | 1.50 | SiN | - | - | 2.70 | −5.84 | - | - | 400 | [187] |
0.80 | 0.50–1.00 | 3.55 | Si3N4 | - | 6.70 | - | −2.683 | 58.0 | ~100 | 669 | [188] |
0.20 | 0.25 | 2.70 | SiN | GaN | 28.30 | - | - | 350.0 | 1000 | 254 | [189] |
0.10 | 0.25 | 2.70 | SiN | GaN | 28.00 | 1.80 | - | 314.0 | 820 | 342 | [190] |
0.50 | 0.25 | 2.70 | SiN | GaN | 47.07 | - | −4.30 | 323.0 | 1080 | 298 | [191] |
0.75 | 0.2 | 1.35 | SiN | - | 62.40 | - | −2.60 | - | 1000 | 140 | [192] |
0.30 | 0.23 | 1.00 | SiCN | - | - | - | - | - | - | 282 | [193] |
0.80 | 0.25 | 1.00 | SiN | - | 38.00 | - | −3.30 | 58.7 | - | 127 | [194] |
Materials | ε (F m−1) | C (J K−1) | K (W m−1 k−1) | Energy Gap (eV) | Ec (eV) | Ev (eV) |
---|---|---|---|---|---|---|
SiO2 | 3.9 | 3.066 | 0.014 | 9 | 3.5 | 4.4 |
SiN | 7.5 | 0.585 | 0.185 | - | - | - |
Al2O3 | 9.3 | 3.14 | 0.29 | 8.8 | 3 | 4.7 |
Hf02 | 22 | - | - | 5.8 | 1.4 | 1.3 |
TaO5 | 26 | - | - | - | - | - |
TiO2 | 80 | - | - | 3.5 | 1.1 | 1.3 |
Parameter | GaN Processes | |
---|---|---|
D01GH | D006GH | |
Gate length | 100 nm | 60 nm |
Cut-off frequency | 110 GHz | 150 GHz |
Maximum oscillation frequency | 180 GHz | 190 GHz |
Gate–drain breakdown voltage | 36 V | 36 V |
Maximum drain current density | 1200 mA mm−1 | 1200 mA mm−1 |
Maximum extrinsic transconductance | 800 mS mm−1 | 950 mS mm−1 |
Minimum noise figure at 40 GHz | 1.5 dB | 1.1 dB |
RF power density | 4 W mm−1 | 3.3 W mm−1 |
Samples | A | B | C | D | E | F |
---|---|---|---|---|---|---|
Metal stack | Ti/Al/Ni/Au | Ti/Al/Ni/Au | Ti/Al/Ni/Au | Ti/Al/Ti/Al/ Ti/Al//Ni/Au | Ti/Al/Ti/Al/ Ti/Al//Ni/Au | Ti/Al/Ti/Al/ Ti/Al//Ni/Au |
Etching depth (nm) | 0 | 10 | 20 | 0 | 10 | 20 |
Annealing temperature (°C) | 850 | 850 | 850 | 850 | 850 | 850 |
Annealing time (s) | 30 | 30 | 30 | 30 | 30 | 30 |
RC (Ω mm) | 1.6748 | 1.1597 | 1.1535 | 1.6554 | 0.9101 | 1.0108 |
ρc (Ω cm2) × 10−5 | 7.9677 | 3.5520 | 3.6413 | 6.3174 | 2.2471 | 2.6838 |
rms (nm) | 105 | 55.7 | 81.9 | 75.8 | 42.5 | 52.2 |
Ra (nm) | 87.3 | 65.4 | 68.4 | 63.3 | 33.3 | 42.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haziq, M.; Falina, S.; Manaf, A.A.; Kawarada, H.; Syamsul, M. Challenges and Opportunities for High-Power and High-Frequency AlGaN/GaN High-Electron-Mobility Transistor (HEMT) Applications: A Review. Micromachines 2022, 13, 2133. https://doi.org/10.3390/mi13122133
Haziq M, Falina S, Manaf AA, Kawarada H, Syamsul M. Challenges and Opportunities for High-Power and High-Frequency AlGaN/GaN High-Electron-Mobility Transistor (HEMT) Applications: A Review. Micromachines. 2022; 13(12):2133. https://doi.org/10.3390/mi13122133
Chicago/Turabian StyleHaziq, Muhaimin, Shaili Falina, Asrulnizam Abd Manaf, Hiroshi Kawarada, and Mohd Syamsul. 2022. "Challenges and Opportunities for High-Power and High-Frequency AlGaN/GaN High-Electron-Mobility Transistor (HEMT) Applications: A Review" Micromachines 13, no. 12: 2133. https://doi.org/10.3390/mi13122133
APA StyleHaziq, M., Falina, S., Manaf, A. A., Kawarada, H., & Syamsul, M. (2022). Challenges and Opportunities for High-Power and High-Frequency AlGaN/GaN High-Electron-Mobility Transistor (HEMT) Applications: A Review. Micromachines, 13(12), 2133. https://doi.org/10.3390/mi13122133