All-In-Focus Polarimetric Imaging Based on an Integrated Plenoptic Camera with a Key Electrically Tunable LC Device
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Common Optical Properties of the CTNLC and LCMLA
3.2. Typical Imaging Application
3.3. Visibility Enhancement in Scattering Medium
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lippmann, G. Epreuves reversibles donnant la sensation du relief. J. Phys. 1908, 7, 821–825. [Google Scholar] [CrossRef]
- Gershun, A. The light field. J. Math. Phys. 1939, 18, 51–151. [Google Scholar] [CrossRef]
- Adelson, E.H.; Bergen, J.R. The plenoptic function and the elements of early vision. In Computational Models of Visual Processing; Massachusetts Institute of Technology Press: Cambridge, MA, USA, 1991. [Google Scholar]
- McMillan, L.; Bishop, G. Plenoptic Modeling: An Image-Based Rendering System. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 6–11 August 1995; pp. 39–46. [Google Scholar]
- Levoy, M.; Hanrahan, P. Light Field Rendering. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996; pp. 31–42. [Google Scholar]
- Ng, R.; Levoy, M.; Brédif, M.; Duval, G.; Horowitz, M.; Hanrahan, P. Light Field Photography with a Hand-Held Plenoptic Camera. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2005; pp. 1–11.
- Lumsdaine, A.; Georgiev, T. Focused plenoptic camera and rendering. J. Electron. Imaging 2010, 19, 021106. [Google Scholar] [CrossRef]
- Martínez-Corral, M.; Javidi, B.; Martínez-Cuenca, R.; Saavedra, G. Integral Imaging with Improved Depth of Field by Use of Amplitude-Modulated Microlens Arrays. Appl. Opt. 2004, 43, 5806–5813. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, T.; Lumsdaine, A. Multimode Plenoptic Imaging. In Proceedings of the Digital Photography XI, San Francisco, CA, USA, 10 February 2015; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9404, p. 940402. [Google Scholar]
- Ohfuchi, T.; Sakakura, M.; Yamada, Y.; Fukuda, N.; Takiya, T.; Shimotsuma, Y.; Miura, K. Polarization Imaging Camera with a Waveplate Array Fabricated with a Femtosecond Laser inside Silica Glass. Opt. Express 2017, 25, 23738–23754. [Google Scholar] [CrossRef]
- Gigan, S. Optical Microscopy Aims Deep. Nat. Photonics 2017, 11, 14–16. [Google Scholar] [CrossRef]
- Wolff, L.B. Polarization-Based Material Classification from Specular Reflection. In IEEE Transactions on Pattern Analysis and Machine Intelligence; IEEE: Piscataway, NJ, USA, 1990; Volume 12, pp. 1059–1071. [Google Scholar]
- Usmani, K.; O’Connor, T.; Shen, X.; Marasco, P.; Carnicer, A.; Dey, D.; Javidi, B. Three-Dimensional Polarimetric Integral Imaging in Photon-Starved Conditions: Performance Comparison between Visible and Long Wave Infrared Imaging. Opt. Express 2020, 28, 19281–19294. [Google Scholar] [CrossRef]
- Xiao, X.; Javidi, B.; Saavedra, G.; Eismann, M.; Martinez-Corral, M. Three-Dimensional Polarimetric Computational Integral Imaging. Opt. Express 2012, 20, 15481–15488. [Google Scholar] [CrossRef]
- Drouet, F.; Stolz, C.; Laligant, O.; Aubreton, O. 3D Reconstruction of External and Internal Surfaces of Transparent Objects from Polarization State of Highlights. Opt. Lett. 2014, 39, 2955–2958. [Google Scholar] [CrossRef]
- Shen, X.; Carnicer, A.; Javidi, B. Three-Dimensional Polarimetric Integral Imaging under Low Illumination Conditions. Opt. Lett. 2019, 44, 3230–3233. [Google Scholar] [CrossRef]
- Matoba, O.; Javidi, B. Three-Dimensional Polarimetric Integral Imaging. Opt. Lett. 2004, 29, 2375–2377. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Wei, D.; Xie, X.; Chen, M.; Zhang, X.; Liao, J.; Wang, H.; Xie, C. Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation. Opt. Express 2018, 26, 4035–4049. [Google Scholar] [CrossRef] [PubMed]
- Gauza, S.; Wu, S.-T.; Spadło, A.; Dabrowski, R. High Performance Room Temperature Nematic Liquid Crystals Based on Laterally Fluorinated Isothiocyanato-Tolanes. J. Disp. Technol. 2006, 2, 247–253. [Google Scholar] [CrossRef]
- Anderson, J.E.; Bos, P.J.; Watson, P.E. LC3D: Liquid Crystal Display 3-D Director Simulator: Software and Technology Guide; Artech House: London, UK, 2001. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Hu, H.; Zhao, L.; Li, X.; Wang, H.; Yang, J.; Li, K.; Liu, T. Polarimetric Image Recovery in Turbid Media Employing Circularly Polarized Light. Opt. Express 2018, 26, 25047–25059. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, Y.; Zhang, X.; Liu, Z. Sky Light Polarization Detection with Linear Polarizer Triplet in Light Field Camera Inspired by Insect Vision. Appl. Opt. 2015, 54, 8962–8970. [Google Scholar] [CrossRef]
- Schadt, M.; Helfrich, W. Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal. Appl. Phys. Lett. 1971, 18, 127–128. [Google Scholar] [CrossRef]
- Berreman, D.W. Optics in Smoothly Varying Anisotropic Planar Structures: Application to Liquid-Crystal Twist Cells. J. Opt. Soc. Am. A 1973, 63, 1374–1380. [Google Scholar] [CrossRef]
- Schiekel, M.; Fahrenschon, K. Deformation of Nematic Liquid Crystals with Vertical Orientation in Electrical Fields. Appl. Phys. Lett. 1971, 19, 391–393. [Google Scholar] [CrossRef]
- Rowe, M.; Pugh, E.; Tyo, J.S.; Engheta, N. Polarization-Difference Imaging: A Biologically Inspired Technique for Observation through Scattering Media. Opt. Lett. 1995, 20, 608–610. [Google Scholar] [CrossRef]
- Tyo, J.S.; Rowe, M.; Pugh, E.; Engheta, N. Target Detection in Optically Scattering Media by Polarization-Difference Imaging. Appl. Opt. 1996, 35, 1855–1870. [Google Scholar] [CrossRef]
- Harnett, C.K.; Craighead, H.G. Liquid-Crystal Micropolarizer Array for Polarization-Difference Imaging. Appl. Opt. 2002, 41, 1291–1296. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; He, W.; Wei, D.; Hu, C.; Shi, J.; Zhang, X.; Wang, H.; Xie, C. Depth-of-Field-Extended Plenoptic Camera Based on Tunable Multi-Focus Liquid-Crystal Microlens Array. Sensors 2020, 20, 4142. [Google Scholar] [CrossRef] [PubMed]
- Algorri, J.F.; Urruchi, V.; Bennis, N.; Morawiak, P.; Oton, J.M.; Oton, J.M. Integral Imaging Capture System With Tunable Field of View Based on Liquid Crystal Microlenses. IEEE Photon. Technol. Lett. 2016, 28, 1854–1857. [Google Scholar] [CrossRef]
- Algorri, J.F.; Urruchi, V.; Bennis, N.; Morawiak, P.; Sanchez-Pena, J.M.; Otón, J.M.; Oton, J.M. Liquid crystal spherical microlens array with high fill factor and optical power. Opt. Express 2017, 25, 605. [Google Scholar] [CrossRef] [PubMed]
- Algorri, J.F.; Bennis, N.; Herman, J.; Kula, P.; Urruchi, V.; Sanchez-Pena, J.M. Low aberration and fast switching microlenses based on a novel liquid crystal mixture. Opt. Express 2017, 25, 14795. [Google Scholar] [CrossRef] [PubMed]
- Jen, T.-H.; Shen, X.; Yao, G.; Huang, Y.-P.; Shieh, H.-P.D.; Javidi, B. Dynamic Integral Imaging Display with Electrically Moving Array Lenslet Technique Using Liquid Crystal Lens. Opt. Express 2015, 23, 18415–18421. [Google Scholar] [CrossRef]
- Hassanfiroozi, A.; Huang, Y.-P.; Javidi, B.; Shieh, H.-P.D. Hexagonal liquid crystal lens array for 3D endoscopy. Opt. Express 2015, 23, 971–981. [Google Scholar] [CrossRef]
- Algorri, J.F.; Bennis, N.; Urruchi, V.; Morawiak, P.; Sánchez-Pena, J.M.; Jaroszewicz, L.R. Tunable liquid crystal multifocal microlens array. Sci. Rep. 2017, 7, 17318. [Google Scholar] [CrossRef] [Green Version]
- Chou, P.-Y.; Wu, J.-Y.; Huang, S.-H.; Wang, C.-P.; Qin, Z.; Huang, C.-T.; Hsieh, P.-Y.; Lee, H.-H.; Lin, T.-H.; Huang, Y.-P. Hybrid Light Field Head-Mounted Display Using Time-Multiplexed Liquid Crystal Lens Array for Resolution Enhancement. Opt. Express 2019, 27, 1164–1177. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Deng, H.; Li, J.-J.; He, M.-Y.; Li, D.; Wang, Q. Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal. Opt. Lett. 2019, 44, 387–390. [Google Scholar] [CrossRef]
- Hamdi, R.; Petriashvili, G.; Lombardo, G.; De Santo, M.; Barberi, R. Liquid Crystal Bubbles Forming a Tunable Micro-Lenses Array. J. Appl. Phys. 2011, 110, 074902. [Google Scholar] [CrossRef]
- Xu, S.; Li, Y.; Liu, Y.; Sun, J.; Ren, H.; Wu, S.-T. Fast-Response Liquid Crystal Microlens. Micromachines 2014, 5, 300–324. [Google Scholar] [CrossRef] [Green Version]
- Fraval, N. Low Aberrations Symmetrical Adaptive Modal Liquid Crystal Lens with Short Focal Lengths. Appl. Opt. 2010, 49, 2778–2783. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-T. Birefringence Dispersions of Liquid Crystals. Phys. Rev. A 1986, 33, 1270. [Google Scholar] [CrossRef]
- Xin, Z.; Tong, Q.; Lei, Y.; Wei, D.; Zhang, X.; Liao, J.; Wang, H.; Xie, C. An Electrically Tunable Polarization and Polarization-Independent Liquid-Crystal Microlens Array for Imaging Applications. J. Opt. 2017, 19, 095602. [Google Scholar] [CrossRef]
- Schechner, Y.Y.; Narasimhan, S.G.; Nayar, S.K. Polarization-Based Vision through Haze. Appl. Opt. 2003, 42, 511–525. [Google Scholar] [CrossRef]
- Schechner, Y.Y.; Karpel, N. Clear Underwater Vision. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, Washington, DC, USA, 27 June–2 July 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 1, pp. 536–543. [Google Scholar]
- Yang, L.; Liang, J.; Zhang, W.; Ju, H.; Ren, L.; Shao, X. Underwater Polarimetric Imaging for Visibility Enhancement Utilizing Active Unpolarized Illumination. Opt. Commun. 2019, 438, 96–101. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Li, Z.; Ye, M.; Liu, T.; Hu, C.; Shi, J.; Liu, K.; Wang, Z.; Zhang, X. All-In-Focus Polarimetric Imaging Based on an Integrated Plenoptic Camera with a Key Electrically Tunable LC Device. Micromachines 2022, 13, 192. https://doi.org/10.3390/mi13020192
Chen M, Li Z, Ye M, Liu T, Hu C, Shi J, Liu K, Wang Z, Zhang X. All-In-Focus Polarimetric Imaging Based on an Integrated Plenoptic Camera with a Key Electrically Tunable LC Device. Micromachines. 2022; 13(2):192. https://doi.org/10.3390/mi13020192
Chicago/Turabian StyleChen, Mingce, Zhexun Li, Mao Ye, Taige Liu, Chai Hu, Jiashuo Shi, Kewei Liu, Zhe Wang, and Xinyu Zhang. 2022. "All-In-Focus Polarimetric Imaging Based on an Integrated Plenoptic Camera with a Key Electrically Tunable LC Device" Micromachines 13, no. 2: 192. https://doi.org/10.3390/mi13020192
APA StyleChen, M., Li, Z., Ye, M., Liu, T., Hu, C., Shi, J., Liu, K., Wang, Z., & Zhang, X. (2022). All-In-Focus Polarimetric Imaging Based on an Integrated Plenoptic Camera with a Key Electrically Tunable LC Device. Micromachines, 13(2), 192. https://doi.org/10.3390/mi13020192