Application of Flow Field Analysis in Ion Beam Figuring for Ultra-Smooth Machining of Monocrystalline Silicon Mirror
Abstract
:1. Introduction
2. Theoretical Analysis
3. Experimental Verification
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, Z.; Wang, D.; Yin, L.; Gu, Q.; Fang, G.; Gu, M.; Leng, Y.; Zhou, Q.; Liu, B.; Tang, C.; et al. Shanghai soft X-ray free-electron laser facility. Chin. J. Lasers 2019, 46, 33–42. [Google Scholar]
- Pellegrini, C. X-ray free-electron lasers: From dreams to reality. Phys. Scr. 2017, 2016, 014004. [Google Scholar] [CrossRef]
- Xu, C. Optics and Engineering of Synchrotron Radiation; Press of University of Science and Technology of China: Hefei, China, 2013; p. 268. [Google Scholar]
- Wang, R.; Fang, Z.; An, H.; Xiong, J.; Xie, Z.; Guo, E.; Wang, C.; Lei, A.; Wang, W. Double-spherically bent crystal high-resolution X-ray spectroscopy of spatially extended sources. Chin. Opt. Lett. 2020, 18, 061101. [Google Scholar] [CrossRef]
- Shi, J.; Yao, T.; Li, M.; Yang, G.; Wei, M.; Shang, W.; Wang, F. High efficiency X-ray diffraction diagnostic spectrometer with multi-curvature bent crystal. Chin. Opt. Lett. 2020, 18, 113401. [Google Scholar] [CrossRef]
- Yi, S.; Zhang, F.; Huang, Q.; Wei, L.; Gu, Y.; Wang, Z. High-resolution X-ray flash radiography of Ti characteristic lines with multilayer Kirkpatrick–Baez Microscope at Shenguang-II Update laser facility. High Power Laser Sci. Eng. 2021, 9, 1–16. [Google Scholar] [CrossRef]
- Martín, L.; Benlliure, J.; Cortinagil, D.; Peñas, J.; Ruiz, C. Improved stability of a compact vacuum-free laser-plasma X-ray source. High Power Laser Sci. Eng. 2020, 8, e18. [Google Scholar] [CrossRef]
- Chen, Z.H.; Sun, F.F.; Zou, Y.; Song, F.; Zhang, S.; Jiang, Z.; Wang, Y.; Tai, R.-Z. Design of wide-range energy material beamline at the Shanghai Synchrotron Radiation Facility. Nucl. Sci. Tech. 2018, 29, 26. [Google Scholar] [CrossRef]
- Guanyuan, X.U.C.P.A.N.G.W.; Pan, G. The design of a beamline for X-ray diffraction and scattering experiments. J. Univ. Sci. Technol. China 1999, 29, 181–188. [Google Scholar]
- Meng, X.; Guo, C.; Wang, Y.; Wu, Y.; Tai, R. Research on partially coherent light propagation in synchrotron beamlines. Acta Opt. Sin. 2013, 33, 0734001. [Google Scholar] [CrossRef]
- Schindler, A.; Haensel, T.; Nickel, A.; Thomas, H.-J.; Lammert, H.; Siewert, F. Finishing procedure for high-performance synchrotron optics. Proc. SPIE 2004, 5180, 64–72. [Google Scholar]
- Shi, Y.; Xu, X.; Huang, Q.; Wang, H.; Li, A.; Zhang, L.; Wang, Z. Development of relative angle determinable stitching interferometry for high-accuracy x-ray focusing mirrors. In Proceedings of the SPIE, San Diego, CA, USA, 7 September 2017; Volume 10385, p. 103850M. [Google Scholar]
- Shi, B.; Liu, W.; Qian, J.; Liu, C.; Khachatryan, R.; Wieczorek, M.; Khounsary, A.; Macrander, A.T.; Zschack, P.; Tischler, J.Z. Nested KB mirror fabrication for synchrotron hard X-ray nanofocusing. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 28 September 2011; Volume 8139, pp. 461–510. [Google Scholar]
- Arnold, T.; Boehm, G.; Fechner, R.; Meister, J.; Nickel, A.; Frost, F.; Hänsel, T.; Schindler, A. Ultra-precision surface finishing by ion beam and plasma jet techniques—Status and outlook. Nucl. Inst. Methods Phys. Res. A 2010, 616, 147–156. [Google Scholar] [CrossRef]
- Li, Y. Study on Key Processing Technologies for High Precision X-ray Mirrors[D]. National University of Defense Technology: Changsha, China, 2017. [Google Scholar]
- Li, M.; Wu, J.; Wu, Y. A review on the fabrication technology of X-ray reflector. Opto-Electron. Eng. 2020, 47, 62–73. [Google Scholar]
- Liang, Z.L. Blowup Phenomena of Solutions for the Full Compressible Euler Equations. J. Xiamen Univ. (Nat. Sci.) 2012, 51, 657–659. [Google Scholar]
- Li, T.; Wang, D. Blowup phenomena of solutions to the Euler equations for compressible fluid flow. J. Differ. Equ. 2006, 221, 91–101. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wu, L.; Fang, Y.; Dun, A.; Zhao, J.; Xu, X.; Zhu, X. Application of Flow Field Analysis in Ion Beam Figuring for Ultra-Smooth Machining of Monocrystalline Silicon Mirror. Micromachines 2022, 13, 318. https://doi.org/10.3390/mi13020318
Wang Z, Wu L, Fang Y, Dun A, Zhao J, Xu X, Zhu X. Application of Flow Field Analysis in Ion Beam Figuring for Ultra-Smooth Machining of Monocrystalline Silicon Mirror. Micromachines. 2022; 13(2):318. https://doi.org/10.3390/mi13020318
Chicago/Turabian StyleWang, Zhe, Lingqi Wu, Yuanyuan Fang, Aihuan Dun, Jiaoling Zhao, Xueke Xu, and Xiaolei Zhu. 2022. "Application of Flow Field Analysis in Ion Beam Figuring for Ultra-Smooth Machining of Monocrystalline Silicon Mirror" Micromachines 13, no. 2: 318. https://doi.org/10.3390/mi13020318
APA StyleWang, Z., Wu, L., Fang, Y., Dun, A., Zhao, J., Xu, X., & Zhu, X. (2022). Application of Flow Field Analysis in Ion Beam Figuring for Ultra-Smooth Machining of Monocrystalline Silicon Mirror. Micromachines, 13(2), 318. https://doi.org/10.3390/mi13020318