Antenna Current Calculation Based on Equivalent Transmission Line Model
Abstract
:1. Introduction
2. Transmitting Antenna
Equivalent Circuit of the Transformers
3. Two-Wire Transmission Line Model of Receiving Antenna
4. One-Wire Transmission Line Model of Receiving Antenna
5. Loss of Equivalent Transmission Line
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Orta, R.; Tascone, R.; Zich, R. A unified formulation for the analysis of general frequency selective surfaces. Electromagnetics 2007, 5, 307–329. [Google Scholar] [CrossRef]
- Pelletti, C.; Bianconi, G.; Mittra, R.; Monorchio, A. Analysis of finite conformal frequency selective surfaces via the characteristic basis function method and spectral rotation approaches. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1404–1407. [Google Scholar] [CrossRef]
- Florencio, R.; Boix, R.R.; Encinar, J.A.; Toso, G. Optimized periodic MoM for the analysis and design of dual polarization multilayered reflectarray antennas made of dipoles. IEEE Trans. Antennas Propag. 2017, 65, 3623–3637. [Google Scholar] [CrossRef]
- Bozzi, M.; Perregrini, L. Efficient analysis of thin conductive screens perforated periodically with arbitrarily shaped apertures. Electron. Lett. 1999, 35, 1085–1087. [Google Scholar] [CrossRef]
- Dong, J.; Ma, Y.; Li, Z.; Mo, J. A Miniaturized Quad-Stopband Frequency Selective Surface with Convoluted and Interdigitated Stripe Based on Equivalent Circuit Model Analysis. Micromachines 2021, 12, 1027. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Withayachumnankul, W.; Fumeaux, C. Single-FSS-Layer Absorber with Improved Bandwidth-Thickness Trade-Off Adopting Impedance Matching Superstrate. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 916–920. [Google Scholar] [CrossRef]
- Luo, K.; Meng, J.; Zhu, D.; Ge, S.; Han, J. Approximate analytical method for hexagonal slot frequency selective surface analysis. Int. J. RF Microw. Comput. Eng. 2021, e22776. [Google Scholar] [CrossRef]
- Munk, B.A.; Burrell, G.A. Plane wave expansion for arrays of arbitrarily oriented piecewise linear elements and its application in determining the impedance of a single linear antenna in a lossy half-space. IEEE Trans. Antennas Propag. 1979, 34, 331–343. [Google Scholar] [CrossRef]
- Munk, B.A. Frequency Selective Surfaces: Theory and Design; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Chen, K.; Du, P.A.; Nie, B.L.; Ren, D. An improved MOM approach to determine the shielding properties of a rectangular enclosure with a doubly periodic array of apertures. IEEE Trans. Electromagn. Compat. 2016, 58, 1456–1464. [Google Scholar] [CrossRef]
- Medina, F.; Mesa, F.; Marqués, R. Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective. IEEE Trans. Microw. Theory Tech. 2008, 56, 3108–3120. [Google Scholar] [CrossRef]
- Rodriguez-Berral, R.; Mesa, F.; Medina, F. Analytical multimodal network approach for 2-D arrays of planar patches/apertures embedded in a layered medium. IEEE Trans. Antennas Propag. 2015, 63, 1969–1983. [Google Scholar] [CrossRef]
- Molero, C.; Rodríguez-Berral, R.; Mesa, F.; Medina, F.; Yakovlev, A.B. Wideband analytical equivalent circuit for one-dimensional periodic stacked arrays. Phys. Rev. E 2016, 93, 013306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesa, F.; García-Vigueras, M.; Medina, F.; Rodríguez-Berral, R.; Mosig, J.R. Circuit-model analysis of frequency selective surfaces with scatterers of arbitrary geometry. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Carter, P.S. Circuit relations in radiating systems and applications to antenna problems. Proc. Inst. Radio Eng. 1932, 20, 1004–1041. [Google Scholar] [CrossRef]
- Brown, G.H.; Woodward, O.M. Experimentally determined impedance characteristics of cylindrical antennas. Proc. IRE 1945, 33, 257–262. [Google Scholar] [CrossRef]
- Schelkunoff, S.A.; Friis, H.T. Antennas Theory and Practice; Wiley: New York, NY, USA, 1952. [Google Scholar]
- Li, B.Y. Antenna Principle and Application; Lanzhou University Press: Lanzhou, China, 1993. [Google Scholar]
- Luo, K.; Yi, Y.; Zong, Z.Y.; Chen, B.; Zhou, X.L.; Duan, Y.T. Approximate Analysis Method for Frequency Selective Surface Based on Kirchhoff Type Circuit. IEEE Trans. Antennas Propag. 2018, 66, 6076–6085. [Google Scholar] [CrossRef]
- Liao, C.E. Foundations for Microwave Technology; Xi’an University Press: Xi’an, China, 1979. [Google Scholar]
- Pozar, D.M. Microwave Enginnering, 3rd ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.; Wen, W. Antenna Current Calculation Based on Equivalent Transmission Line Model. Micromachines 2022, 13, 714. https://doi.org/10.3390/mi13050714
Wei S, Wen W. Antenna Current Calculation Based on Equivalent Transmission Line Model. Micromachines. 2022; 13(5):714. https://doi.org/10.3390/mi13050714
Chicago/Turabian StyleWei, Shusheng, and Wusong Wen. 2022. "Antenna Current Calculation Based on Equivalent Transmission Line Model" Micromachines 13, no. 5: 714. https://doi.org/10.3390/mi13050714
APA StyleWei, S., & Wen, W. (2022). Antenna Current Calculation Based on Equivalent Transmission Line Model. Micromachines, 13(5), 714. https://doi.org/10.3390/mi13050714