Design, Fabrication, and Characterization of a Laser-Controlled Explosion-Initiating Device with Integrated Safe-and-Arm, EMP-Resistant, and Fast-Acting Technology Based on Photovoltaic Power Converter
Abstract
:1. Introduction
2. Laser-Controlled Intelligent Initiation System
3. Design of Laser-Controlled Explosion-Initiating Device
3.1. Design and Characterization of the Optical Beam Expander
3.2. Design and Fabrication of GaAs PV Converter
3.3. Design of Safe-and-Arms Control Integrated Circuit
4. Experiment Results and Discussions
4.1. Characterization of Laser Energy Storage
4.2. Characterization of Initiation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, D.L.; Guo, B.Y.; Ning, S.K. Design and implementation of explosive network of electronic detonators and communication protocol based on the RS-485. J. Shanxi Univ. Technol. 2010, 26, 20–23. [Google Scholar]
- Liu, T.; Fu, Y.Z.; Xie, K.N. Design and verification of new kind of integrated ordance initiation control system. Comput. Sci. 2008, 35, 4. [Google Scholar]
- Boucher, C.; Novotney, D. Performance evaluation of an addressable integrated ordnance system. In Proceedings of the 37th Joint Propulsion Conference and Exhibit, Salt Lake City, UT, USA, 8–11 July 2001; p. 3636. [Google Scholar]
- Novotney, D.; Kochanek, A. Intelligent initiation systems for divert and attitude control applications. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, 10–13 July 2005; p. 4502. [Google Scholar]
- Nelson, S.D.; Diamond, M.N. Networked Electronic Ordnance System. U.S. Patent 7644661B1, 12 January 2010. [Google Scholar]
- Lucy, M.; Hardy, R.; Kist, E.; Watson, J.; Wise, S. Report on Alternative Devices to Pyrotechnics on Spacecraft; NASA-TM-110470; NASA Langley Research Center: Hampton, VA, USA, 1996; pp. 1–17. [Google Scholar]
- Benson, D.A.; Kuswa, G.W. Optically Energized EMP-Resistant, Fast-Acting Explosion Initiation Device. U.S. Patent 4700629, 20 October 1987. [Google Scholar]
- Yin, G.; Zhang, J.C.; Ren, X.; Han, K.H.; Li, L.M. Design and Feasibility of an Addressable Initiation Network System. Chin. J. Energetic Mater. 2019, 27, 426–433. [Google Scholar]
- Lara, M.R. Electro-Optical Initiation System; No.10-S-0259; Alliant Techsystems Inc.: Arizona State, VI, USA, 2010; pp. 521–523. [Google Scholar]
- Fafard, S.; Proulx, F.; York, M.C.A.; Richard, L.S.; Provost, P.-O.; Arès, R.; Aimez, V.; Masson, D.P. High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%. Appl. Phys. Lett. 2016, 109, 131107. [Google Scholar] [CrossRef]
- Seredin, P.; Kashkarov, V.; Arsentyev, I.; Bondarev, A.; Tarasov, I. Distinctions of the growth and structural-spectroscopic investigations of thin AlN films grown on the GaAs substrates. Phys. B Condens. Matter 2016, 495, 54–63. [Google Scholar] [CrossRef]
- Khvostikov, V.P.; Kalyuzhnyy, N.A.; Mintairov, S.A.; Sorokina, S.V.; Potapovich, N.S.; Emelyanov, V.M.; Timoshina, N.K.; Andreev, V.M. Photovoltaic laser-power converter based on AlGaAs/GaAs heterostructures. Semiconductors 2016, 50, 1220–1224. [Google Scholar] [CrossRef]
- Guan, C.G.; Liu, W.; Gao, Q. Influence of the mesa electrode position on monolithic on-chip series-interconnect GaAs laser power converter performance. Mater. Sci. Semicond. Processing 2018, 75, 136–142. [Google Scholar] [CrossRef]
- Seredin, P.; Lenshin, A.; Zolotukhin, D.; Arsentyev, I.; Nikolaev, D.; Zhabotinskiy, A. Experimental study of structural and optical properties of integrated MOCVD GaAs/Si (001) heterostructures. Phys. B Condens. Matter 2018, 530, 30–37. [Google Scholar] [CrossRef]
- Schubert, J.; Oliva, E.; Dimroth, F.; Guter, W.; Loeckenhoff, R.; Bett, A. High-voltage GaAs photovoltaic laser power converters. IEEE Trans. Electron Devices 2009, 56, 170–175. [Google Scholar] [CrossRef]
- Shan, T.Q.; Qi, X.L. Characteristics of GaAs concentrator cells for high-intensity laser. WSEAS Trans. Circuits Syst. 2014, 13, 440–444. [Google Scholar]
- Rahim, N.A.; Ping, H.W.; Selvaraj, J. Photovoltaic module modeling using Simulink/Matlab. Procedia Environ. Sci. 2013, 17, 537–546. [Google Scholar]
- Lal, M.; Singh, S.N. A new method of determination of series and shunt resistances of silicon solar cells. Sol. Energy Mater. Sol. Cells 2007, 91, 137–142. [Google Scholar]
- Zhang, K.; Rossi, C.; Petrantoni, M.; Mauran, N. A nano initiator realized by integrating Al/CuO-based nanoenergetic materials with a Au/Pt/Cr microheater. J. Microelectromechanical Syst. 2008, 17, 832–836. [Google Scholar] [CrossRef]
- Taton, G.; Lagrange, D.; Conedera, V.; Renaud, L.; Rossi, C. Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane. J. Micromechanics Microeng. 2013, 23, 105009. [Google Scholar] [CrossRef]
- Huang, J.; Sun, Y.R.; Zhao, Y.M.; Yu, S.Z.; Li, K.L. Characterization of high–voltage vertically-stacked GaAs laser power converter. J. Semicond. 2018, 39, 094006-1–094006-6. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, D.; Zhang, H.; Lu, J. Simulation of single-junction GaAs photovoltaic cell output characteristics by continuous wave laser irradiation. Infrared Laser Eng. 2012, 46, 1003006. [Google Scholar] [CrossRef]
- Li, Y.P.; Zhang, J.M.; Dou, P.C.; Shi, Y.B.; Feng, G.B. Thermal damage mechanism of single junction GaAs solar cells irradiated by continuous wave laser. Infrared Laser Eng. 2018, 5, 05060011–05060016. [Google Scholar]
- Lee, K.-N.; Park, M.-I.; Choi, S.-H.; Park, C.-O.; Uhm, H.S. Characteristics of plasma generated by polysilicon semiconductor bridge (SCB). Sens. Actuators A Phys. 2002, 96, 252–257. [Google Scholar] [CrossRef]
- Zhu, P.; Jiao, J.; Shen, R.; Ye, Y.; Fu, S.; Li, D. Energetic semiconductor bridge device incorporating Al/MoO x multilayer nanofilms and negative temperature coefficient thermistor chip. J. Appl. Phys. 2014, 115, 194502. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, B.; Qin, Z.C.; Ren, G.; Li, Y.; Du, P.K. EMC protection of SCB explosive devices by using SMD-based NTC thermistors. IEEE Trans. Electromagn. Compat. 2012, 54, 1216–1221. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, G.; Bao, H.; Zhao, Y.; Ren, W.; Ji, X.; Cheng, J.; Ren, X. Design, Fabrication, and Characterization of a Laser-Controlled Explosion-Initiating Device with Integrated Safe-and-Arm, EMP-Resistant, and Fast-Acting Technology Based on Photovoltaic Power Converter. Micromachines 2022, 13, 728. https://doi.org/10.3390/mi13050728
Yin G, Bao H, Zhao Y, Ren W, Ji X, Cheng J, Ren X. Design, Fabrication, and Characterization of a Laser-Controlled Explosion-Initiating Device with Integrated Safe-and-Arm, EMP-Resistant, and Fast-Acting Technology Based on Photovoltaic Power Converter. Micromachines. 2022; 13(5):728. https://doi.org/10.3390/mi13050728
Chicago/Turabian StyleYin, Guofu, Huiqin Bao, Yulong Zhao, Wei Ren, Xiangfei Ji, Jianhua Cheng, and Xi Ren. 2022. "Design, Fabrication, and Characterization of a Laser-Controlled Explosion-Initiating Device with Integrated Safe-and-Arm, EMP-Resistant, and Fast-Acting Technology Based on Photovoltaic Power Converter" Micromachines 13, no. 5: 728. https://doi.org/10.3390/mi13050728
APA StyleYin, G., Bao, H., Zhao, Y., Ren, W., Ji, X., Cheng, J., & Ren, X. (2022). Design, Fabrication, and Characterization of a Laser-Controlled Explosion-Initiating Device with Integrated Safe-and-Arm, EMP-Resistant, and Fast-Acting Technology Based on Photovoltaic Power Converter. Micromachines, 13(5), 728. https://doi.org/10.3390/mi13050728