Trojan pH-Sensitive Polymer Particles Produced in a Continuous-Flow Capillary Microfluidic Device Using Water-in-Oil-in-Water Double-Emulsion Droplets
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Nano- and Microparticle Synthesis
2.2.1. PLGA-Based NPs Produced in Continuous Flow
2.2.2. Trojan Eudragit® Microparticles Produced in a Batch Type Reactor
2.2.3. Trojan Eudragit® Microparticles Produced in Continuous Flow
3. Characterization
Droplet and Particle Size Analysis
4. Results and Discussions
4.1. Hydrodynamic Conditions
4.2. Capillaries’ Alignment and Their Relative Position
4.3. pH at the External Phase
4.4. Polymer Concentration in the Middle Phase Stream
4.5. Internal and Continuous Phase Flow
4.6. Drying Process
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasad, V.; De Jesús, K.; Mailankody, S. The High Price of Anticancer Drugs: Origins, Implications, Barriers, Solutions. Nat. Rev. Clin. Oncol. 2017, 14, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in Oral Drug Delivery. Front. Pharmacol. 2021, 12, 618411. [Google Scholar] [CrossRef] [PubMed]
- Andreu, V.; Larrea, A.; Rodriguez-Fernandez, P.; Alfaro, S.; Gracia, B.; Luciá, A.; Usón, L.; Gomez, A.-C.; Mendoza, G.; Lacoma, A.; et al. Matryoshka-Type Gastro-Resistant Microparticles for the Oral Treatment of Mycobacterium Tuberculosis. Nanomedicine 2019, 14, 707–726. [Google Scholar] [CrossRef] [Green Version]
- Freire, C.; Podczeck, F.; Veiga, F.; Sousa, J. Influence of the Coating Formulation on Enzymatic Digestibility and Drug Release from 5-Aminosalicylic Acid Pellets Coated with Mixtures of High-Amylose Starch and Surelease Intended for Colon-Specific Drug Delivery. Drug Dev. Ind. Pharm. 2010, 36, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Sci. Pharm. 2019, 87, 20. [Google Scholar] [CrossRef] [Green Version]
- Yus, C.; Gracia, R.; Larrea, A.; Andreu, V.; Irusta, S.; Sebastian, V.; Mendoza, G.; Arruebo, M. Targeted Release of Probiotics from Enteric Microparticulated Formulations. Polymers 2019, 11, 1668. [Google Scholar] [CrossRef] [Green Version]
- De Solorzano, I.; Mendoza, G.; Arruebo, M.; Sebastian, V. Customized Hybrid and NIR-Light Triggered Thermoresponsive Drug Delivery Microparticles Synthetized by Photopolymerization in a One-Step Flow Focusing Continuous Microreactor. Colloids Surf. B Biointerfaces 2020, 190, 110904. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Raliya, R.; Chadha, T.S.; Hadad, K.; Biswas, P. Perspective on Nanoparticle Technology for Biomedical Use. Curr. Pharm. Des. 2016, 22, 2481. [Google Scholar] [CrossRef] [Green Version]
- Anton, N.; Jakhmola, A.; Vandamme, T.F. Trojan Microparticles for Drug Delivery. Pharmaceutics 2012, 4, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Nijhara, R.; Balakrishnan, K. Bringing Nanomedicines to Market: Regulatory Challenges, Opportunities, and Uncertainties. Nanomed. Nanotechnol. Biol. Med. 2006, 2, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Larrea, A.; Clemente, A.; Luque, M.E.; Sebastian, V. Efficient Production of Hybrid Bio-Nanomaterials by Continuous Microchannel Emulsification: Dye-Doped SiO2 and Au-PLGA Nanoparticles. Chem. Eng. J. 2017, 316, 663–672. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.U.; Serra, C.A.; Anton, N.; Er-Rafik, M.; Blanck, C.; Schmutz, M.; Kraus, I.; Messaddeq, N.; Sutter, C.; Anton, H.; et al. Microfluidic Conceived Trojan Microcarriers for Oral Delivery of Nanoparticles. Int. J. Pharm. 2015, 493, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, V.; Arruebo, M. Chapter 8—Microfluidic Production of Inorganic Nanomaterials for Biomedical Applications. In Micro and Nano Technologies; Santos, H.A., Liu, D., Zhang, H., Eds.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 179–216. [Google Scholar] [CrossRef]
- Dong, H.; Tang, G.; Ma, T.; Cao, X. One-Step Fabrication of Inorganic/Organic Hybrid Microspheres with Tunable Surface Texture for Controlled Drug Release Application. J. Mater. Sci. Mater. Med. 2016, 27, 7. [Google Scholar] [CrossRef]
- Conchouso, D.; Castro, D.; Khan, S.A.; Foulds, I.G. Three-Dimensional Parallelization of Microfluidic Droplet Generators for a Litre per Hour Volume Production of Single Emulsions. Lab Chip 2014, 14, 3011–3020. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, H.; Herranz, B.B.; Mäkilä, E.; Lehto, V.-P.; Salonen, J.; Hirvonen, J.; Santos, H.A. Microfluidic Assembly of Monodisperse Multistage PH-Responsive Polymer/Porous Silicon Composites for Precisely Controlled Multi-Drug Delivery. Small 2014, 10, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, D.; Shahbazi, M.-A.; Mäkilä, E.; Herranz-Blanco, B.; Salonen, J.; Hirvonen, J.; Santos, H.A. Fabrication of a Multifunctional Nano-in-Micro Drug Delivery Platform by Microfluidic Templated Encapsulation of Porous Silicon in Polymer Matrix. Adv. Mater. 2014, 26, 4497–4503. [Google Scholar] [CrossRef] [PubMed]
- Serra, C.; Berton, N.; Bouquey, M.; Prat, L.; Hadziioannou, G. A Predictive Approach of the Influence of the Operating Parameters on the Size of Polymer Particles Synthesized in a Simplified Microfluidic System. Langmuir 2007, 23, 7745–7750. [Google Scholar] [CrossRef]
- Gomez, L.; Sebastian, V.; Irusta, S.; Ibarra, A.; Arruebo, M.; Santamaria, J. Scaled-up Production of Plasmonic Nanoparticles Using Microfluidics: From Metal Precursors to Functionalized and Sterilized Nanoparticles. Lab Chip 2014, 14, 325–332. [Google Scholar] [CrossRef]
- De Solorzano, I.; Uson, L.; Larrea, A.; Miana, M.; Sebastian, V.; Arruebo, M. Continuous Synthesis of Drug-Loaded Nanoparticles Using Microchannel Emulsification and Numerical Modeling: Effect of Passive Mixing. Int. J. Nanomed. 2016, 11, 3397–3416. [Google Scholar] [CrossRef] [Green Version]
- Kuchler, B.S.; Larrea, A.; Petry, L.; Idoux, G.Y.; Sebastian, V.; Ferrandon, A.; Schwinté, P.; Arruebo, M.; Benkirane, J.N. Promoting Bioengineered Tooth Innervation Using Nanostructured and Hybrid Scaffolds. Acta Biomater. 2017, 50, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Luque-Michel, E.; Larrea, A.; Lahuerta, C.; Sebastian, V.; Imbuluzqueta, E.; Arruebo, M.; Blanco-Prieto, M.J.; Santamaría, J. A simple approach to obtain hybrid Au-loaded polymeric nanoparticles with a tunable metal load. Nanoscale 2016, 8, 6495–6506. [Google Scholar] [CrossRef] [Green Version]
- Luque, M.E.; Sebastian, V.; Szczupak, B.; Imbuluzqueta, E.; Llop, J.; Blanco, P.M.J. Visualization of Hybrid Gold-Loaded Polymeric Nanoparticles in Cells Using Scanning Electron Microscopy. J. Drug Deliv. Sci. Technol. 2017, 42, 315–320. [Google Scholar] [CrossRef]
- Patel, D.M.; Sardhara, B.M.; Thumbadiya, D.H.; Patel, C.N. Development and Validation of Spectrophotometric Method for Simultaneous Estimation of Paracetamol and Lornoxicam in Different Dissolution Media. Pharm. Methods 2012, 3, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Liang, N.; Yamamoto, H.; Kawashima, Y.; Cui, F.; Yan, P. PH-Sensitive Poly(Lactide-Co-Glycolide) Nanoparticle Composite Microcapsules for Oral Delivery of Insulin. Int. J. Nanomed. 2015, 10, 3489–3498. [Google Scholar] [CrossRef] [Green Version]
- United States Pharmacopeial Convention. United States Pharmacopeia and National Formulary, 26th ed.; United States Pharmacopeial Convention: Rockville, MD, USA, 2003. [Google Scholar]
- Shah, U.; Jasani, A. UV Spectrophotometric and RP-HPLC Methods for Simulataneous Estimation of Isoniazid, Rifampicin and Piperine in Pharmaceutical Dosage Form. Int. J. Pharm. Pharm. Sci. 2014, 6, 274–280. [Google Scholar]
- Chang, Z.; Serra, C.A.; Bouquey, M.; Prat, L.; Hadziioannou, G. Co-Axial Capillaries Microfluidic Device for Synthesizing Size- and Morphology-Controlled Polymer Core-Polymer Shell Particles. Lab Chip 2009, 9, 3007–3011. [Google Scholar] [CrossRef]
- Nunes, J.K.; Tsai, S.S.H.; Wan, J.; Stone, H.A. Dripping and Jetting in Microfluidic Multiphase Flows Applied to Particle and Fiber Synthesis. J. Phys. D Appl. Phys. 2013, 46, 114002. [Google Scholar] [CrossRef]
- Bouquey, M.; Serra, C.; Berton, N.; Prat, L.; Hadziioannou, G. Microfluidic Synthesis and Assembly of Reactive Polymer Beads to Form New Structured Polymer Materials. Chem. Eng. J. 2008, 135, 93–98. [Google Scholar] [CrossRef]
- Liu, W.; Wu, W.D.; Selomulya, C.; Chen, X.D. Uniform Chitosan Microparticles Prepared by a Novel Spray-Drying Technique. Int. J. Chem. Eng. 2011, 2011, 267218. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larrea, A.; Arruebo, M.; Serra, C.A.; Sebastián, V. Trojan pH-Sensitive Polymer Particles Produced in a Continuous-Flow Capillary Microfluidic Device Using Water-in-Oil-in-Water Double-Emulsion Droplets. Micromachines 2022, 13, 878. https://doi.org/10.3390/mi13060878
Larrea A, Arruebo M, Serra CA, Sebastián V. Trojan pH-Sensitive Polymer Particles Produced in a Continuous-Flow Capillary Microfluidic Device Using Water-in-Oil-in-Water Double-Emulsion Droplets. Micromachines. 2022; 13(6):878. https://doi.org/10.3390/mi13060878
Chicago/Turabian StyleLarrea, Ane, Manuel Arruebo, Christophe A. Serra, and Victor Sebastián. 2022. "Trojan pH-Sensitive Polymer Particles Produced in a Continuous-Flow Capillary Microfluidic Device Using Water-in-Oil-in-Water Double-Emulsion Droplets" Micromachines 13, no. 6: 878. https://doi.org/10.3390/mi13060878
APA StyleLarrea, A., Arruebo, M., Serra, C. A., & Sebastián, V. (2022). Trojan pH-Sensitive Polymer Particles Produced in a Continuous-Flow Capillary Microfluidic Device Using Water-in-Oil-in-Water Double-Emulsion Droplets. Micromachines, 13(6), 878. https://doi.org/10.3390/mi13060878