High-Temperature Ferroelectric Behavior of Al0.7Sc0.3N
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural and Leakage Characteristics
3.2. Polarization Retention at Elevated Temperatures
3.3. Device Fatigue at Elevated Temperatures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neudeck, P.G.; Meredith, R.D.; Chen, L.; Spry, D.J.; Nakley, L.M.; Hunter, G.W. Prolonged Silicon Carbide Integrated Circuit Operation in Venus Surface Atmospheric Conditions. AIP Adv. 2016, 6, 125119. [Google Scholar] [CrossRef]
- Lee, K.; Kang, S.H. Design Consideration of Magnetic Tunnel Junctions for Reliable High-Temperature Operation of STT-MRAM. IEEE Trans. Magn. 2010, 46, 1537–1540. [Google Scholar] [CrossRef]
- Wong, H.-S.P.; Raoux, S.; Kim, S.; Liang, J.; Reifenberg, J.P.; Rajendran, B.; Asheghi, M.; Goodson, K.E. Phase Change Memory. Proc. IEEE 2010, 98, 2201–2227. [Google Scholar] [CrossRef]
- Ye, C.; Wu, J.; He, G.; Zhang, J.; Deng, T.; He, P.; Wang, H. Physical Mechanism and Performance Factors of Metal Oxide Based Resistive Switching Memory: A Review. J. Mater. Sci. Technol. 2016, 32, 1–11. [Google Scholar] [CrossRef]
- Taito, Y.; Nakano, M.; Okimoto, H.; Okada, D.; Ito, T.; Kono, T.; Noguchi, K.; Hidaka, H.; Yamauchi, T. 7.3 A 28 nm Embedded SG-MONOS Flash Macro for Automotive Achieving 200 MHz Read Operation and 2.0MB/S Write Throughput at Ti, of 170 °C. In Proceedings of the 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 22–26 February 2015; pp. 1–3. [Google Scholar]
- Suga, H.; Suzuki, H.; Shinomura, Y.; Kashiwabara, S.; Tsukagoshi, K.; Shimizu, T.; Naitoh, Y. Highly Stable, Extremely High-Temperature, Nonvolatile Memory Based on Resistance Switching in Polycrystalline Pt Nanogaps. Sci. Rep. 2016, 6, 34961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Arya, D.S.; Jain, U. MEM-FLASH Non-Volatile Memory Device for High-Temperature Multibit Data Storage. Appl. Phys. Lett. 2019, 115, 43501. [Google Scholar] [CrossRef]
- Stolichnov, I.; Tagantsev, A.K.; Colla, E.; Setter, N.; Cross, J.S. Physical Model of Retention and Temperature-Dependent Polarization Reversal in Ferroelectric Films. J. Appl. Phys. 2005, 98, 84106. [Google Scholar] [CrossRef]
- Mueller, S.; Muller, J.; Schroeder, U.; Mikolajick, T. Reliability Characteristics of Ferroelectric Si:HfO2 Thin Films for Memory Applications. IEEE Trans. Device Mater. Relib. 2013, 13, 93–97. [Google Scholar] [CrossRef]
- Kounga, A.B.; Granzow, T.; Aulbach, E.; Hinterstein, M.; Rödel, J. High-Temperature Poling of Ferroelectrics. J. Appl. Phys. 2008, 104, 24116. [Google Scholar] [CrossRef]
- Kamel, T.M.; Kools, F.X.N.M.; de With, G. Poling of Soft Piezoceramic PZT. J. Eur. Ceram. Soc. 2007, 27, 2471–2479. [Google Scholar] [CrossRef]
- Ali, T.; Kuhnel, K.; Czernohorsky, M.; Mart, C.; Rudolph, M.; Patzold, B.; Lehninger, D.; Olivo, R.; Lederer, M.; Muller, F.; et al. A Study on the Temperature-Dependent Operation of Fluorite-Structure-Based Ferroelectric HfO2 Memory FeFET: Pyroelectricity and Reliability. IEEE Trans. Electron. Devices 2020, 67, 2981–2987. [Google Scholar] [CrossRef]
- Mohan, J.; Hernandez-Arriaga, H.; Jung, Y.C.; Onaya, T.; Nam, C.-Y.; Tsai, E.H.R.; Kim, S.J.; Kim, J. Ferroelectric Polarization Retention with Scaling of Hf0.5Zr0.5O2 on Silicon. Appl. Phys. Lett. 2021, 118, 102903. [Google Scholar] [CrossRef]
- Fichtner, S.; Wolff, N.; Lofink, F.; Kienle, L.; Wagner, B. AlScN: A III-V Semiconductor Based Ferroelectric. J. Appl. Phys. 2019, 125, 114103. [Google Scholar] [CrossRef]
- Hayden, J.; Hossain, M.D.; Xiong, Y.; Ferri, K.; Zhu, W.; Imperatore, M.V.; Giebink, N.; Trolier-McKinstry, S.; Dabo, I.; Maria, J.-P. Ferroelectricity in Boron-Substituted Aluminum Nitride Thin Films. Phys. Rev. Mater. 2021, 5, 44412. [Google Scholar] [CrossRef]
- Yasuoka, S.; Shimizu, T.; Tateyama, A.; Uehara, M.; Yamada, H.; Akiyama, M.; Hiranaga, Y.; Cho, Y.; Funakubo, H. Effects of Deposition Conditions on the Ferroelectric Properties of (Al1−xScx)N Thin Films. J. Appl. Phys. 2020, 128, 114103. [Google Scholar] [CrossRef]
- Schönweger, G.; Petraru, A.; Islam, M.R.; Wolff, N.; Haas, B.; Hammud, A.; Koch, C.; Kienle, L.; Kohlstedt, H.; Fichtner, S. From Fully Strained to Relaxed: Epitaxial Ferroelectric Al1−xScx N for III-N Technology. Adv. Funct. Mater. 2022, 32, 2109632. [Google Scholar] [CrossRef]
- Yazawa, K.; Drury, D.; Zakutayev, A.; Brennecka, G.L. Reduced Coercive Field in Epitaxial Thin Film of Ferroelectric Wurtzite Al0.7Sc0.3N. Appl. Phys. Lett. 2021, 118, 162903. [Google Scholar] [CrossRef]
- Zhu, W.; Hayden, J.; He, F.; Yang, J.-I.; Tipsawat, P.; Hossain, M.D.; Maria, J.-P.; Trolier-McKinstry, S. Strongly Temperature Dependent Ferroelectric Switching in AlN, Al1−xScxN, and Al1−xBxN Thin Films. Appl. Phys. Lett. 2021, 119, 062901. [Google Scholar] [CrossRef]
- Wang, J.; Park, M.; Ansari, A. High-Temperature Acoustic and Electric Characterization of Ferroelectric Al0.7Sc0.3N Films. J. Microelectromech. Syst. 2022, 31, 234–240. [Google Scholar] [CrossRef]
- Mizutani, R.; Yasuoka, S.; Shiraishi, T.; Shimizu, T.; Uehara, M.; Yamada, H.; Akiyama, M.; Sakata, O.; Funakubo, H. Thickness Scaling of (Al0.8Sc0.2)N Films with Remanent Polarization beyond 100 ΜC Cm−2 around 10 Nm in Thickness. Appl. Phys. Express 2021, 14, 105501. [Google Scholar] [CrossRef]
- Gund, V.; Davaji, B.; Lee, H.; Asadi, M.J.; Casamento, J.; Xing, H.G.; Jena, D.; Lal, A. Temperature-Dependent Lowering of Coercive Field in 300 Nm Sputtered Ferroelectric Al0.70Sc0.30N. In Proceedings of the 2021 IEEE International Symposium on Applications of Ferroelectrics (ISAF), Sydney, Australia, 16 May 2021; pp. 1–3. [Google Scholar]
- Islam, M.d.R.; Wolff, N.; Yassine, M.; Schönweger, G.; Christian, B.; Kohlstedt, H.; Ambacher, O.; Lofink, F.; Kienle, L.; Fichtner, S. On the Exceptional Temperature Stability of Ferroelectric Al1-xScxN Thin Films. Appl. Phys. Lett. 2021, 118, 232905. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D.; Kim, K.-H.; Katti, K.; Zheng, J.; Musavigharavi, P.; Miao, J.; Stach, E.A.; Olsson, R.H.; Jariwala, D. Post-CMOS Compatible Aluminum Scandium Nitride/2D Channel Ferroelectric Field-Effect-Transistor Memory. Nano Lett. 2021, 21, 3753–3761. [Google Scholar] [CrossRef] [PubMed]
- Mikolajick, T.; Slesazeck, S.; Mulaosmanovic, H.; Park, M.H.; Fichtner, S.; Lomenzo, P.D.; Hoffmann, M.; Schroeder, U. Next Generation Ferroelectric Materials for Semiconductor Process Integration and Their Applications. J. Appl. Phys. 2021, 129, 100901. [Google Scholar] [CrossRef]
- Tsai, S.-L.; Hoshii, T.; Wakabayashi, H.; Tsutsui, K.; Chung, T.-K.; Chang, E.Y.; Kakushima, K. Room-Temperature Deposition of a Poling-Free Ferroelectric AlScN Film by Reactive Sputtering. Appl. Phys. Lett. 2021, 118, 082902. [Google Scholar] [CrossRef]
- Drury, D.; Yazawa, K.; Mis, A.; Talley, K.; Zakutayev, A.; Brennecka, G.L. Understanding Reproducibility of Sputter-Deposited Metastable Ferroelectric Wurtzite Al0.6Sc0.4N Films Using In Situ Optical Emission Spectrometry. Phys. Status Solidi RRL 2021, 15, 2100043. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Remack, K.; Boku, K.; Udayakumar, K.R.; Aggarwal, S.; Summerfelt, S.R.; Celii, F.G.; Martin, S.; Hall, L.; Taylor, K.; et al. Reliability Properties of Low-Voltage Ferroelectric Capacitors and Memory Arrays. IEEE Trans. Device Mater. Relib. 2004, 4, 436–449. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drury, D.; Yazawa, K.; Zakutayev, A.; Hanrahan, B.; Brennecka, G. High-Temperature Ferroelectric Behavior of Al0.7Sc0.3N. Micromachines 2022, 13, 887. https://doi.org/10.3390/mi13060887
Drury D, Yazawa K, Zakutayev A, Hanrahan B, Brennecka G. High-Temperature Ferroelectric Behavior of Al0.7Sc0.3N. Micromachines. 2022; 13(6):887. https://doi.org/10.3390/mi13060887
Chicago/Turabian StyleDrury, Daniel, Keisuke Yazawa, Andriy Zakutayev, Brendan Hanrahan, and Geoff Brennecka. 2022. "High-Temperature Ferroelectric Behavior of Al0.7Sc0.3N" Micromachines 13, no. 6: 887. https://doi.org/10.3390/mi13060887
APA StyleDrury, D., Yazawa, K., Zakutayev, A., Hanrahan, B., & Brennecka, G. (2022). High-Temperature Ferroelectric Behavior of Al0.7Sc0.3N. Micromachines, 13(6), 887. https://doi.org/10.3390/mi13060887