A Precise Closed-Loop Controlled ZnO Nanowire Resonator Operating at Room Temperature
Abstract
:1. Introduction
2. Microfabrication and Closed-Loop System Design
2.1. Fabrication of ZnO NW Resonators
2.2. Principle of Closed-Loop Measurement and Control System
3. Measurement and Discussion
3.1. Closed-Loop Experiment Process
3.2. Measurement of Resonant Frequency Fluctuations
3.3. Measurement of Resonator Phase Noise
3.4. Obtaining the Parasitic Parameters of the Resonator
3.4.1. Establishment of Equivalent Circuit Model
3.4.2. Calculation of Equivalent Circuit Model Parameters
3.4.3. Identification of Parasitic Parameters of Resonator
3.4.4. Influence of Parasitic Parameters on Q Value
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gerlt, M.S.; Laubli, N.F.; Manser, M.; Nelson, B.J.; Dual, J. Reduced Etch Lag and High Aspect Ratios by Deep Reactive Ion Etching (DRIE). Micromachines 2021, 12, 542. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.T.; Hu, T.J.; Zhao, Y.L. Research Status and Development Trend of MEMS Switches: A Review. Micromachines 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Midolo, L.; Schliesser, A.; Fiore, A. Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 2018, 13, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.T.; Callegari, C.; Feng, X.L.; Ekinci, K.L.; Roukes, M.L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 2006, 6, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Mouro, J.; Tiribilli, B.; Paoletti, P. A Versatile Mass-Sensing Platform with Tunable Nonlinear Self-Excited Microcantilevers. IEEE Trans. Nanotechnol. 2018, 17, 751–762. [Google Scholar] [CrossRef] [Green Version]
- Kasai, Y.; Yabuno, H.; Ishine, T.; Yamamoto, Y.; Matsumoto, S. Mass sensing using a virtual cantilever virtually coupled with a real cantilever. Appl. Phys. Lett. 2019, 115, 063103. [Google Scholar] [CrossRef]
- Chowdhury, R.; Adhikari, S. Boron-Nitride Nanotubes as Zeptogram-Scale Bionanosensors: Theoretical Investigations. IEEE Trans. Nanotechnol. 2011, 10, 659–667. [Google Scholar] [CrossRef]
- Rugar, D.; Budakian, R.; Mamin, H.J.; Chui, B.W. Single spin detection by magnetic resonance force microscopy. Nature 2004, 430, 329–332. [Google Scholar] [CrossRef]
- Ding, H.; Wu, C.J.; Xie, J. A MEMS Resonant Accelerometer with High Relative Sensitivity Based on Sensing Scheme of Electrostatically Induced Stiffness Perturbation. J. Microelectromech. Syst. 2021, 30, 32–41. [Google Scholar] [CrossRef]
- Feng, X.L.; White, C.J.; Hajimiri, A.; Roukes, M.L. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nat. Nanotechnol. 2008, 3, 342–346. [Google Scholar] [CrossRef] [Green Version]
- Perrin, Y.; Galisultanov, A.; Hutin, L.; Basset, P.; Fanet, H.; Pillonnet, G. Contact-Free MEMS Devices for Reliable and Low-Power Logic Operations. IEEE Trans. Electron. Dev. 2021, 68, 2938–2943. [Google Scholar] [CrossRef]
- Zuo, C.J.; Sinha, N.; Van der Spiegel, J.; Piazza, G. Multifrequency Pierce Oscillators Based on Piezoelectric AlN Contour-Mode MEMS Technology. J. Microelectromech. Syst. 2010, 19, 570–580. [Google Scholar] [CrossRef]
- Villanueva, L.G.; Karabalin, R.B.; Matheny, M.H.; Kenig, E.; Cross, M.C.; Roukes, M.L. A Nanoscale Parametric Feedback Oscillator. Nano Lett. 2011, 11, 5054–5059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, C.L.; Jha, R. Experimental evaluation of augmented UD identification based vibration control of smart structures. J. Sound Vib. 2004, 274, 1065–1078. [Google Scholar] [CrossRef]
- Iqbal, F.; Lee, B. A Study on Measurement Variations in Resonant Characteristics of Electrostatically Actuated MEMS Resonators. Micromachines 2018, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.C.; Dey, S.; Liu, T.Y.; Chen, C.C.; Li, S.S. Thermal-Piezoresistive SOI-MEMS Oscillators Based on a Fully Differential Mechanically Coupled Resonator Array for Mass Sensing Applications. J. Microelectromech. Syst. 2018, 27, 59–72. [Google Scholar] [CrossRef]
- Kangul, M.; Aydin, E.; Gokce, F.; Zorlu, O.; Kulah, H. Analysis and Elimination of the Capacitive Feedthrough Current on Electrostatically Actuated and Sensed Resonance-Based MEMS Sensors. J. Microelectromech. Syst. 2017, 26, 1272–1278. [Google Scholar] [CrossRef]
- Prants, F.G.; Bonatto, C. Amplitude Death, Bifurcations, and Basins of Attraction of a Planar Self-Sustained Oscillator with Delayed Feedback. Braz. J. Phys. 2022, 52, 39. [Google Scholar] [CrossRef]
- Huang, X.M.H.; Feng, X.L.; Zorman, C.A.; Mehregany, M.; Roukes, M.L. VHF, UHF and microwave frequency nanomechanical resonators. New J. Phys. 2005, 7, 247. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, Y.Y.; Vinluan, R.; Wang, S.B.; Cui, C.; Lu, X.X.; Peng, C.Q.; Zhang, M.W.; Zheng, J.; Gao, P.X. Enhancing ZnO nanowire gas sensors using Au/Fe2O3 hybrid nanoparticle decoration. Nanotechnology 2020, 31, 325505. [Google Scholar] [CrossRef]
- Stassi, S.; Marini, M.; Allione, M.; Lopatin, S.; Marson, D.; Laurini, E.; Pricl, S.; Pirri, C.F.; Ricciardi, C.; Di Fabrizio, E. Nanomechanical DNA resonators for sensing and structural analysis of DNA-ligand complexes. Nat. Commun. 2019, 10, 1690. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.L.; Zhu, R. Zinc oxide nanorod field effect transistor for long-time cellular force measurement. Sci. Rep. 2017, 7, 43661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.; Jeon, S.; Yong, K. Fabrication and characterization of flower-like CuO-ZnO heterostructure nanowire arrays by photochemical deposition. Nanotechnology 2011, 22, 015606. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.S.; Lee, S.W.; Lee, H.J.; Lee, H.J.; Lee, S.H.; Goto, H.; Kato, T.; Fujii, K.; Cho, M.W.; Yao, T. The fabrication of vertical light-emitting diodes using chemical lift-off process. IEEE Photonics Tech. Lett. 2008, 20, 175–177. [Google Scholar] [CrossRef]
- Lee, K.; Zimmerman, J.D.; Xiao, X.; Sun, K.; Forrest, S.R. Reuse of GaAs substrates for epitaxial lift-off by employing protection layers. J. Appl. Phys. 2012, 111, 672–676. [Google Scholar] [CrossRef]
- Lin, C.F.; Dai, J.J.; Wang, G.M.; Lin, M.S. Chemical Lift-Off Process for Blue Light-Emitting Diodes. Appl. Phys. Express 2010, 3, 2101. [Google Scholar] [CrossRef]
- Zhu, R.; Zhang, G.P. Support Losses in Micromechanical Resonators under Electrostatic and Piezoelectric Actuations. IEEE Sens. J. 2013, 13, 1105–1109. [Google Scholar] [CrossRef]
- Feng, X.L.; He, R.R.; Yang, P.D.; Roukes, M.L. Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 2007, 7, 1953–1959. [Google Scholar] [CrossRef] [Green Version]
- Ekinci, K.L.; Yang, Y.T.; Roukes, M.L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 2004, 95, 2682–2689. [Google Scholar] [CrossRef] [Green Version]
- Photiadis, D.M.; Judge, J.A. Attachment losses of high Q oscillators. Appl. Phys. Lett. 2004, 85, 482–484. [Google Scholar] [CrossRef]
- Wilson-Rae, I. Intrinsic dissipation in nanomechanical resonators due to phonon tunneling. Phys. Rev. B 2008, 77, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Li, K.M.; Wang, T.T.; Liu, J. Differential conductance and spin current in hybrid quantum dot-topological superconducting nanowire. Quantum. Inf. Process. 2021, 20, 177. [Google Scholar] [CrossRef]
- Setiono, A.; Xu, J.S.; Fahrbach, M.; Bertke, M.; Nyang’au, W.O.; Wasisto, H.S.; Peiner, E. Real-Time Frequency Tracking of an Electro-Thermal Piezoresistive Cantilever Resonator with ZnO Nanorods for Chemical Sensing. Chemosensors 2019, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Setiono, A.; Nyang’au, W.O.; Fahrbach, M.; Xu, J.S.; Bertke, M.; Wasisto, H.S.; Peiner, E. Improvement of frequency responses of an in-plane electro-thermal cantilever sensor for real-time measurement. J. Micromech. Microeng. 2019, 29, 124006. [Google Scholar] [CrossRef]
- Dong, X.S.; Yang, S.H.; Zhu, J.H.; En, Y.F.; Huang, Q.W. Method of Measuring the Mismatch of Parasitic Capacitance in MEMS Accelerometer Based on Regulating Electrostatic Stiffness. Micromachines 2018, 9, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connell, A.D.; Hofheinz, M.; Ansmann, M.; Bialczak, R.C.; Lenander, M.; Lucero, E.; Neeley, M.; Sank, D.; Wang, H.; Weides, M.; et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 2010, 464, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Morankar, A.; Patrikar, R. Dual frequency MEMS resonator through mixed electrical and mechanical coupling scheme. ET Circuits Device. Syst. 2018, 12, 88–93. [Google Scholar] [CrossRef]
d (nm) | L (μm) | ρ (kg/m3) | U0 (V) | D (nm) | f0 (MHz) | Q |
---|---|---|---|---|---|---|
70 | 6.1 | 5.67 × 103 | 2 | 100 | 10.352 | 600 |
K (N/m) | m (kg) | η | Rm (MΩ) | Cm (fF) | Lm (H) | C0 (F) |
---|---|---|---|---|---|---|
0.289 | 6.84 × 10−17 | 7.67 × 10−10 | 12.60 | 2.03 × 10−3 | 116.26 | 3.40 × 10−28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Xu, L. A Precise Closed-Loop Controlled ZnO Nanowire Resonator Operating at Room Temperature. Micromachines 2022, 13, 952. https://doi.org/10.3390/mi13060952
Cai X, Xu L. A Precise Closed-Loop Controlled ZnO Nanowire Resonator Operating at Room Temperature. Micromachines. 2022; 13(6):952. https://doi.org/10.3390/mi13060952
Chicago/Turabian StyleCai, Xianfa, and Lizhong Xu. 2022. "A Precise Closed-Loop Controlled ZnO Nanowire Resonator Operating at Room Temperature" Micromachines 13, no. 6: 952. https://doi.org/10.3390/mi13060952
APA StyleCai, X., & Xu, L. (2022). A Precise Closed-Loop Controlled ZnO Nanowire Resonator Operating at Room Temperature. Micromachines, 13(6), 952. https://doi.org/10.3390/mi13060952