Oscillator-Network-Based Ising Machine
Abstract
:1. Introduction
2. Theoretical Background
2.1. Types of Oscillators
2.2. Ising Model and Max-Cut Problem
2.3. The Formulation
3. Experimental Demonstrations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grötschel, M.; Lovász, L. Combinatorial Optimization. In Handbook of Combinatorics; MIT Press: Cambridge, MA, United States, 1996; Volume 2, pp. 1541–1597. [Google Scholar]
- Barahona, F.; Grötschel, M.; Jünger, M.; Reinelt, G. An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 1988, 36, 493–513. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Chiu, P.W.; Moy, W.; Kim, C.H. A probabilistic compute fabric based on coupled ring oscillators for solving combinatorial optimization problems. IEEE J. Solid-State Circuits 2021, 56, 2870–2880. [Google Scholar] [CrossRef]
- Mohseni, N.; McMahon, P.L.; Byrnes, T. Ising machines as hardware solvers of combinatorial optimization problems. Nat. Rev. Phys. 2022, 4, 363–379. [Google Scholar] [CrossRef]
- Johnson, M.W.; Amin, M.H.; Gildert, S.; Lanting, T.; Hamze, F.; Dickson, N.; Harris, R.; Berkley, A.J.; Johansson, J.; Bunyk, P.; et al. Quantum Annealing with manufactured spins. Nature 2011, 473, 194–198. [Google Scholar] [CrossRef]
- Bian, Z.; Chudak, F.; Israel, R.; Lackey, B.; Macready, W.G.; Roy, A. Discrete optimization using quantum annealing on sparse Ising models. Front. Phys. 2014, 2, 56. [Google Scholar] [CrossRef]
- Houck, A.A.; Türeci, H.E.; Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 2012, 8, 292–299. [Google Scholar] [CrossRef]
- Boixo, S.; Smelyanskiy, V.N.; Shabani, A.; Isakov, S.V.; Dykman, M.; Denchev, V.S.; Amin, M.H.; Smirnov, A.Y.; Mohseni, M.; Neven, H. Computational multiqubit tunnelling in programmable quantum annealers. Nat. Commun. 2016, 7, 10327. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, T.; Haribara, Y.; Igarashi, K.; Sonobe, T.; Tamate, S.; Honjo, T.; Marandi, A.; McMahon, P.L.; Umeki, T.; Enbutsu, K.; et al. A coherent Ising machine for 2000-node optimization problems. Science 2016, 354, 603–606. [Google Scholar] [CrossRef] [Green Version]
- Marandi, A.; Wang, Z.; Takata, K.; Byer, R.L.; Yamamoto, Y. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photonics 2014, 8, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Honjo, T.; Sonobe, T.; Inaba, K.; Inagaki, T.; Ikuta, T.; Yamada, Y.; Kazama, T.; Enbutsu, K.; Umeki, T.; Kasahara, R.; et al. 100,000-spin coherent Ising machine. Sci. Adv. 2021, 7, eabh0952. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Aihara, K.; Leleu, T.; Kawarabayashi, K.I.; Kako, S.; Fejer, M.; Inoue, K.; Takesue, H. Coherent Ising machines—Optical neural networks operating at the quantum limit. Npj Quantum Inform. 2017, 3, 49. [Google Scholar] [CrossRef] [Green Version]
- Yamaoka, M.; Yoshimura, C.; Hayashi, M.; Okuyama, T.; Aoki, H.; Mizuno, H. A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing. IEEE J. Solid-St. Circ 2015, 51, 303–309. [Google Scholar]
- Tsukamoto, S.; Takatsu, M.; Matsubara, S.; Tamura, H. An accelerator architecture for combinatorial optimization problems. Fujitsu Sci. Tech. J. 2017, 53, 8–13. [Google Scholar]
- Zhang, J.; Chen, S.; Wang, Y. Advancing CMOS-type Ising arithmetic unit into the domain of real-world applications. IEEE Trans. Comput. 2017, 67, 604–616. [Google Scholar] [CrossRef]
- Yoshimura, C.; Yamaoka, M.; Aoki, H.; Mizuno, H. September. Spatial computing architecture using randomness of memory cell stability under voltage control. In Proceedings of the European Conference on Circuit Theory and Design (ECCTD), Dresden, Germany, 8–12 September 2013; pp. 1–4. [Google Scholar]
- Wang, T.; Roychowdhury, J. Oscillator-based Ising machine. arXiv 2017, arXiv:1709.08102. [Google Scholar]
- Wang, T.; Roychowdhury, J. OIM: Oscillator-based Ising machines for solving combinatorial optimisation problems. In International Conference on Unconventional Computation and Natural Computation; Springer: Cham, Switzerland, 2019; pp. 232–256. [Google Scholar]
- Michal, V. On the low-power design, stability improvement and frequency estimation of the CMOS ring oscillator. In Proceedings of the 22nd International Conference Radioelektronika, Brno, Czech Republic, 17–18 April 2012; pp. 1–4. [Google Scholar]
- Maffezzoni, P.; Daniel, L.; Shukla, N.; Datta, S.; Raychowdhury, A. Modeling and simulation of vanadium dioxide relaxation oscillators. IEEE Trans. Circuits Syst. I Reg. Pap. 2015, 62, 2207–2215. [Google Scholar] [CrossRef] [Green Version]
- Corinto, F.; Ascoli, A.; Gilli, M. Nonlinear dynamics of memristor oscillators. IEEE Trans. Circuits Syst. I Reg. Pap. 2011, 58, 1323–1336. [Google Scholar] [CrossRef]
- Dutta, S.; Khanna, A.; Assoa, A.S.; Paik, H.; Schlom, D.G.; Toroczkai, Z.; Raychowdhury, A.; Datta, S. An Ising Hamiltonian solver based on coupled stochastic phase-transition nano-oscillators. Nat. Electron. 2021, 4, 502–512. [Google Scholar] [CrossRef]
- Chen, T.; Dumas, R.K.; Eklund, A.; Muduli, P.K.; Houshang, A.; Awad, A.A.; Dürrenfeld, P.; Malm, B.G.; Rusu, A.; Åkerman, J. Spin-torque and spin-Hall nano-oscillators. Proc. IEEE 2016, 104, 1919–1945. [Google Scholar] [CrossRef] [Green Version]
- Albertsson, D.I.; Zahedinejad, M.; Houshang, A.; Khymyn, R.; Åkerman, J.; Rusu, A. Ultrafast Ising Machines using spin torque nano-oscillators. Appl. Phys. Lett. 2021, 118, 112404. [Google Scholar] [CrossRef]
- Csaba, G.; Porod, W. Coupled oscillators for computing: A review and perspective. Appl. Phys. Rev. 2020, 7, 011302. [Google Scholar] [CrossRef]
- Brush, S.G. History of the Lenz-Ising model. Rev. Mod. Phys. 1967, 39, 883. [Google Scholar] [CrossRef]
- Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations; Springer: Boston, MA, USA, 1972; pp. 85–103. [Google Scholar]
- Lucas, A. Ising formulations of many NP problems. Front. Phys. 2014, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Steinerberger, S. Max-Cut via Kuramoto-type Oscillators. arXiv 2021, arXiv:2102.04931. [Google Scholar]
- Wang, T.; Wu, L.; Nobel, P.; Roychowdhury, J. Solving combinatorial optimisation problems using oscillator based Ising machines. Nat. Comput 2021, 20, 287–306. [Google Scholar] [CrossRef]
- Razavi, B. A study of injection pulling and locking in oscillators. In Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, San Jose, CA, USA, 24 September 2003; pp. 305–312. [Google Scholar]
- Hong, B.; Hajimiri, A. A phasor-based analysis of sinusoidal injection locking in LC and ring oscillators. IEEE Trans. Circuits Syst. I Reg. Pap. 2018, 66, 355–368. [Google Scholar] [CrossRef]
- Bhansali, P.; Roychowdhury, J. Gen-Adler: The generalized Adler’s equation for injection locking analysis in oscillators. In Proceedings of the Asia and South Pacific Design Automation Conference, Tokyo, Japan, 21–24 January 2009; pp. 522–527. [Google Scholar]
- Neogy, A.; Roychowdhury, J. Analysis and design of sub-harmonically injection locked oscillators. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 12–16 March 2012; pp. 1209–1214. [Google Scholar]
- Roychowdhury, J. Numerical Simulation and Modelling of Electronic and Biochemical Systems; Now Publishers Inc.: Norwell, MA, USA, 2009. [Google Scholar]
- Demir, A.; Mehrotra, A.; Roychowdhury, J. Phase noise in oscillators: A unifying theory and numerical methods for characterization. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2000, 47, 655–674. [Google Scholar] [CrossRef] [Green Version]
- Demir, A.; Roychowdhury, J. A reliable and efficient procedure for oscillator PPV computation with phase noise macromodeling applications. IEEE Trans. Compu. Aided Design of Integr. Circuits Syst. 2003, 22, 188–197. [Google Scholar] [CrossRef]
- Adler, R. A study of locking phenomena in oscillators. Proc. IEEE 1973, 61, 1380–1385. [Google Scholar] [CrossRef]
- Acebrón, J.A.; Bonilla, L.L.; Vicente, C.J.P.; Ritort, F.; Spigler, R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 2005, 77, 137. [Google Scholar] [CrossRef] [Green Version]
- Van Hemmen, J.L.; Wreszinski, W.F. Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators. J. Stat. Phys. 1993, 72, 145–166. [Google Scholar] [CrossRef]
- Chou, J.; Bramhavar, S.; Ghosh, S.; Herzog, W. Analog coupled oscillator based weighted Ising machine. Sci. Rep. 2019, 9, 14786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Wu, L.; Roychowdhury, J. New computational results and hardware prototypes for oscillator-based ising machines. In Proceedings of the 56th Annual Design Automation Conference, Las Vegas, NV, USA, 2–6 June 2019; pp. 1–2. [Google Scholar]
- Ahmed, I.; Chiu, P.W.; Kim, C.H. A probabilistic self-annealing compute fabric based on 560 hexagonally coupled ring oscillators for solving combinatorial optimization problems. In Proceedings of the IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 16–19 June 2020; pp. 1–2. [Google Scholar]
- Moy, W.; Ahmed, I.; Chiu, P.W.; Moy, J.; Sapatnekar, S.S.; Kim, C.H. A 1,968-node coupled ring oscillator circuit for combinatorial optimization problem solving. Nat. Electron. 2022, 5, 310–317. [Google Scholar] [CrossRef]
- Dutta, S.; Khanna, A.; Gomez, J.; Ni, K.; Toroczkai, Z.; Datta, S. Experimental demonstration of phase transition nano-oscillator based Ising machine. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 37–38. [Google Scholar]
- Dutta, S.; Khanna, A.; Datta, S. Understanding the continuous-time dynamics of phase-transition nano-oscillator-based ising Hamiltonian solver. IEEE J. Explor. Solid-State Computat. Devices Circuits 2020, 6, 155–163. [Google Scholar] [CrossRef]
- McGoldrick, B.C.; Sun, J.Z.; Liu, L. Ising Machine Based on Electrically Coupled Spin Hall Nano-Oscillators. Phys. Rev. Appl. 2022, 17, 014006. [Google Scholar] [CrossRef]
- Awad, A.A.; Dürrenfeld, P.; Houshang, A.; Dvornik, M.; Iacocca, E.; Dumas, R.K.; Åkerman, J. Long-range mutual synchronization of spin Hall nano-oscillators. Nature Phys. 2017, 13, 292–299. [Google Scholar] [CrossRef]
- Kendziorczyk, T.; Kuhn, T. Mutual synchronization of nanoconstriction-based spin Hall nano-oscillators through evanescent and propagating spin waves. Phys. Rev. B. 2016, 93, 134413. [Google Scholar] [CrossRef]
- Kaka, S.; Pufall, M.R.; Rippard, W.H.; Silva, T.J.; Russek, S.E.; Katine, J.A. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 2005, 437, 389–392. [Google Scholar] [CrossRef]
- Zahedinejad, M.; Awad, A.A.; Muralidhar, S.; Khymyn, R.; Fulara, H.; Mazraati, H.; Dvornik, M.; Åkerman, J. Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing. Nat. Nanotechnol. 2020, 15, 47–52. [Google Scholar] [CrossRef]
- Houshang, A.; Zahedinejad, M.; Muralidhar, S.; Khymyn, R.; Rajabali, M.; Fulara, H.; Awad, A.A.; Åkerman, J.; Chęciński, J.; Dvornik, M. Phase-Binarized Spin Hall Nano-Oscillator Arrays: Towards Spin Hall Ising Machines. Phys. Rev. Appl. 2022, 17, 014003. [Google Scholar] [CrossRef]
- Bashar, M.K.; Mallick, A.; Truesdell, D.S.; Calhoun, B.H.; Joshi, S.; Shukla, N. Experimental demonstration of a reconfigurable coupled oscillator platform to solve the Max-cut problem. IEEE J. Explor. Solid-State Computat. Devices Circuits 2020, 6, 116–121. [Google Scholar] [CrossRef]
Type of Oscillator | Oscillation Frequency | Number of Nodes | Coupling Method | Coupling Weight | Solution Time | Power Consumption | Success Probability | Reference |
---|---|---|---|---|---|---|---|---|
LC | 1 MHz | 240 | R | Programmable | 1 ms | 5 W | / | [42] |
LC | 50 kHz | 4 | R | Programmable | 100 μs | / | 98% | [41] |
Ring | 118 MHz | 560 | Inverter | Programmable | 200 ns | 23 mW | 82–100% | [3] |
Ring | 1 GHz | 1968 | Transmission gates | Programmable | 50 ns | 42 mW | 89–100% | [44] |
Schmitt-trigger | 45 kHz | 30 | C | Programmable | / | 1.76 mW | 72% | [53] |
VO2 phase-transition | 500 MHz | 8 | C | No | 30 μs | 2.56 mW | 96% | [22] |
Spin Hall * | / | 100 | C | No | 6.8 μs | 11.5 mW | / | [47] |
Spin Hall | 7.8 GHz | 4 | Magnetic dipole | Programmable | / | 144 mW | / | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Deng, Y.; Lin, Y.; Jiang, Y.; Dong, Y.; Chen, X.; Wang, G.; Shang, D.; Wang, Q.; Yu, H.; et al. Oscillator-Network-Based Ising Machine. Micromachines 2022, 13, 1016. https://doi.org/10.3390/mi13071016
Zhang Y, Deng Y, Lin Y, Jiang Y, Dong Y, Chen X, Wang G, Shang D, Wang Q, Yu H, et al. Oscillator-Network-Based Ising Machine. Micromachines. 2022; 13(7):1016. https://doi.org/10.3390/mi13071016
Chicago/Turabian StyleZhang, Yi, Yi Deng, Yinan Lin, Yang Jiang, Yujiao Dong, Xi Chen, Guangyi Wang, Dashan Shang, Qing Wang, Hongyu Yu, and et al. 2022. "Oscillator-Network-Based Ising Machine" Micromachines 13, no. 7: 1016. https://doi.org/10.3390/mi13071016
APA StyleZhang, Y., Deng, Y., Lin, Y., Jiang, Y., Dong, Y., Chen, X., Wang, G., Shang, D., Wang, Q., Yu, H., & Wang, Z. (2022). Oscillator-Network-Based Ising Machine. Micromachines, 13(7), 1016. https://doi.org/10.3390/mi13071016