Investigations of Micro-Deformation in Monocrystalline Copper at Low Temperatures via Indentation
Abstract
:1. Introduction
2. Methods
2.1. Experimental
2.2. MD Simulation Model
3. Results
4. Discussion
4.1. Plastic Response
4.2. Elastic Response
5. Conclusions
- ISBs were found inside the residual imprints of monocrystalline copper on the three oriented faces at 150 K using the experimental indentation method. The distribution of the directions of these ISBs essentially followed the active slip systems in FCC crystals but was bent because of the geometry of the indentation tip.
- ISBs occurred at both RT and low temperatures, whereas stronger elastic recovery enabled the ISBs to be observed distinctly at low temperatures. The discontinuity of the imprint boundary at low temperatures, which consisted of indistinct and ISB-shaped states, was also due to elastic recovery during the unloading process.
- Plastic deformation was inhibited at low temperatures, resulting in a weakened pile-up and OSBs. The material inside the imprints underwent a more downward deformation to adapt to the geometry of the indentation tip, further strengthening the phenomenon of ISBs.
- The limited motion of the slip bands was in good agreement with the lattice rotation regions beneath the imprints. The ISBs could be considered microscopic forms on the surface of aggregated GNDs. The motions of GNDs in an actual crystal should occur along specific slip faces to match the corresponding deformations in different regions under imprints.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, S.; Vaid, A.; Im, J.; Kim, B.; Prakash, A.; Guenolu, L.; Kiener, D.; Bitzek, E.; Oh, S.H. In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops. Nat. Commun. 2020, 11, 2367. [Google Scholar] [CrossRef] [PubMed]
- Eltaher, M.A.; Wagih, A.; Melaibari, A.; Alsoruji, G.S.; Attia, M.A. Elastoplastic indentation response of sigmoid/power functionally graded ceramics structures. Polymers 2022, 14, 1225. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Xu, L.; Du, X.; Zhao, D.; Zhu, B.; Yu, M.; Zhao, H. Investigations of phase transformation in monocrystalline silicon at low temperatures via nanoindentation. Sci. Rep. 2017, 7, 8682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Zhao, D.; Sun, X.; Wang, S.; Guo, Y.; Wang, J.; Zhao, H. Effects of plastic strain on mechanical and electrical conductivity response of (100) monocrystalline. Copper. Sci. Adv. Mater. 2020, 12, 1004–1011. [Google Scholar] [CrossRef]
- Rester, M.; Motz, C.; Pappan, R. Indentation across size scales—A survey of indentation-induced plastic zones in copper {111} single crystals. Scr. Mater. 2008, 59, 742–745. [Google Scholar] [CrossRef]
- Armstrong, R.W.; Elban, W.L. Exceptional crystal strain hardening determined over macro- to micro- to nano-size scales in continuous spherical indentation tests. Mat. Sci. Eng. A -Struct. 2019, 757, 95–100. [Google Scholar] [CrossRef]
- Cui, L.; Yu, C.; Jiang, S.; Sun, X.; Peng, R.; Lundgren, J.; Moverare, J. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X. J. Mater. Sci. Technol. 2022, 96, 295–307. [Google Scholar] [CrossRef]
- Wang, Y.; Raabe, D.; Kluber, C.; Roters, F. Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater. 2004, 52, 2229–2238. [Google Scholar] [CrossRef] [Green Version]
- Cackett, A.; Hardie, C.; Lim, J.J.; Tarleton, E. Spherical indentation of copper: Crystal plasticity vs experiment. Materialia 2019, 7, 100368. [Google Scholar] [CrossRef]
- Varillas, J.; Ocenasek, J.; Torner, J.; Alcala, J. Understanding imprint formation, plastic instabilities and hardness evolutions in FCC, BCC and HCP metal surfaces. Acta Mater. 2021, 217, 117122. [Google Scholar] [CrossRef]
- Li, L.; Sun, X.; Guo, Y.; Zhao, D.; Du, X.; Zhao, H.; Ma, Z. Nanoindentation response of monocrystalline copper under various tensile pre-deformations via molecular dynamic simulations. Adv. Mech. Eng. 2018, 10, 12. [Google Scholar] [CrossRef]
- Li, H.; Che, P.; Yang, X.; Huang, Y.; Ning, Z.; Sun, J.; Fan, H. Enhanced tensile properties and wear resistance of additively manufactured CoCrFeMnNi high-entropy alloy at cryogenic temperature. Rare Met. 2022, 41, 1210–1216. [Google Scholar] [CrossRef]
- Khayyat, M.; Hasko, D.; Chaudhri, M. Effect of sample temperature on the indentation-induced phase transitions in crystalline silicon. J. Appl. Phys. 2007, 101, 083515. [Google Scholar] [CrossRef]
- Gai, P.; Zhang, K.; Weertman, L. Electron microscopy study of nanocrystalline copper deformed by a microhardness indenter. Scr. Mater. 2007, 56, 25–28. [Google Scholar] [CrossRef]
- Brons, J.G.; Padilla, H.A.; Thompson, G.B.; Boyce, B.L. Cryogenic indentation-induced grain growth in nanotwinned copper. Scr. Mater. 2013, 68, 781–784. [Google Scholar] [CrossRef]
- Wang, S.; Xu, H.; Wang, Y.; Kong, L.; Wang, Z.; Liu, S.; Zhang, J.; Zhao, H. Design and testing of a cryogenic indentation apparatus. Rev. Sci. Instrum. 2019, 90, 015117. [Google Scholar] [CrossRef]
- Foiles, S.M.; Baskes, M.I.; Daw, M.S. Embedded-atom method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 1986, 33, 7983–7991. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, H.; Shi, C.; Zhang, L.; Hang, H.; Ren, L. Influence of double-tip scratch and single-tip scratch on nano-scratching process via molecular dynamics simulation. Appl. Surf. Sci. 2013, 280, 751–756. [Google Scholar] [CrossRef]
- Zhu, B.; Zhao, H.; Zhao, D.; Zhang, P.; Yang, Y.; Han, L.; Kui, H. Effects of vibration frequency on vibration-assisted nano-scratch process of monocrystalline copper vi molecular dynamics simulation. AIP Adv. 2016, 6, 035015. [Google Scholar] [CrossRef] [Green Version]
- Stadler, J.; Mikulla, R.; Trebin, H. IMD: A software package for molecular dynamics studies on parallel computers. Int. J. Mod. Phys. C 1997, 8, 1131–1140. [Google Scholar] [CrossRef] [Green Version]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Liu, Y.; Varghese, S.; Ma, J.; Yoshino, M.; Lu, H.; Komanduri, R. Orientation effects in nanoindentation of single crystal copper. Int. J. Plast. 2008, 24, 1990–2015. [Google Scholar] [CrossRef]
- Eidel, B. Crystal plasticity finite-element analysis versus experimental results of pyramidal indentation into (001) fcc single crystal. Acta Mater. 2011, 59, 1761–1771. [Google Scholar] [CrossRef]
- Parlinska-Wojtan, M.; Wasmer, K.; Tharian, J.; Michler, J. Microstructural comparison of material damage in GaAs caused by Berkovich and wedge nanoindentation and nanoscratching. Scr. Mater. 2008, 59, 364–367. [Google Scholar] [CrossRef]
- Oliver, D.; Bradby, J.; Williams, J. Giant pop-ins and amorphization in germanium during indentation. J. Appl. Phys. 2007, 101, 043524. [Google Scholar] [CrossRef] [Green Version]
- Nix, W.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- McLaughlin, K.K.; Clegg, W.J. Deformation underneath low-load indentations in copper. J. Phys. D Appl. Phys. 2008, 41, 074007. [Google Scholar] [CrossRef]
- Gao, Y.F.; Larson, B.C.; Lee, J.H.; Nicola, L.; Tischler, J.Z.; Pharr, G.M. Lattice rotation patterns and strain gradient effects in face-centered-cubic single crystals under spherical indentation. J. Appl. Mech. 2015, 82, 061007. [Google Scholar] [CrossRef]
- Kysar, J.; Gan, Y.; Morse, T.; Chen, X.; Jones, E. High strain gradient plasticity associated with wedge indentation into face-centered cubic single crystals: Geometrically necessary dislocation densities. J. Mech. Phys. Solids 2007, 55, 1554–1573. [Google Scholar] [CrossRef]
- Pharr, G.M.; Herbert, E.G.; Gao, Y. The indentation size effect: A critical examination of experimental observations. Annu. Rev. Mater. Res. 2010, 40, 271–292. [Google Scholar] [CrossRef]
- Zaafarani, N.; Raabe, D.; Roters, F.; Zaefferer, S. On the origin of deformation-induced rotation patterns below nanoindents. Acta Mater. 2008, 56, 31–42. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhao, D.; Niu, Y.; Wang, Z.; Yang, H.; Zhao, H. Investigations of Micro-Deformation in Monocrystalline Copper at Low Temperatures via Indentation. Micromachines 2022, 13, 1043. https://doi.org/10.3390/mi13071043
Wang S, Zhao D, Niu Y, Wang Z, Yang H, Zhao H. Investigations of Micro-Deformation in Monocrystalline Copper at Low Temperatures via Indentation. Micromachines. 2022; 13(7):1043. https://doi.org/10.3390/mi13071043
Chicago/Turabian StyleWang, Shunbo, Dan Zhao, Yihan Niu, Zhaoxin Wang, Hongxiu Yang, and Hongwei Zhao. 2022. "Investigations of Micro-Deformation in Monocrystalline Copper at Low Temperatures via Indentation" Micromachines 13, no. 7: 1043. https://doi.org/10.3390/mi13071043
APA StyleWang, S., Zhao, D., Niu, Y., Wang, Z., Yang, H., & Zhao, H. (2022). Investigations of Micro-Deformation in Monocrystalline Copper at Low Temperatures via Indentation. Micromachines, 13(7), 1043. https://doi.org/10.3390/mi13071043