Evaluation on Temperature-Dependent Transient VT Instability in p-GaN Gate HEMTs under Negative Gate Stress by Fast Sweeping Characterization
Abstract
:1. Introduction
2. Device Descriptions and Test Schemes
3. Results and Discussion
3.1. VT Shift in Pulse Transfer Tests
3.2. Transient ΔVT Evolution in MSM Sequences
3.3. Physical Mechanism Analysis
- The depletion width of SCR, in the p-GaN layer of SG HEMTs, would decrease under the negative gate bias stress, which also leads to hole release [4];
- Holes could flow from the gate-source drift region, towards the gate stack, and under large negative gate bias stress. Part of the holes may flow out to the gate terminal and contribute to the gate current, while part of the holes may get trapped into the gate stack region and lead to an extra hole accumulation [16].
- The deep-level defects in the AlGaN layer could be activated with an increasing temperature and participate in the de-trapping process of electrons at the negative gate bias;
- The acceptors in the p-GaN cap layer could be quickly ionized with an increasing temperature and, hence, release holes at the negative gate bias, leaving net negative charges behind.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, K.J.; Haberlen, O.; Lidow, A.; Tsai, C.l.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si Power Technology: Devices and Applications. IEEE Trans. Electron Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Amano, H.; Baines, Y.; Beam, E.; Borga, M.; Bouchet, T.; Chalker, P.R.; Charles, M.; Chen, K.J.; Chowdhury, N.; Chu, R.; et al. The 2018 GaN power electronics roadmap. J. Phys. D Appl. Phys. 2018, 51, 163001. [Google Scholar] [CrossRef]
- Ma, C.-T.; Gu, Z.-H. Review of GaN HEMT Applications in Power Converters over 500 W. Electronics 2019, 8, 1401. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wei, J.; Xie, R.; Liu, C.; Tang, G.; Chen, K.J. Maximizing the Performance of 650-V p-GaN Gate HEMTs: Dynamic RON Characterization and Circuit Design Considerations. IEEE Trans. Power Electron. 2017, 32, 5539–5549. [Google Scholar] [CrossRef]
- Del Alamo, J.A.; Lee, E.S. Stability and Reliability of Lateral GaN Power Field-Effect Transistors. IEEE Trans. Electron Devices 2019, 66, 4578–4590. [Google Scholar] [CrossRef]
- Ruzzarin, M.; Meneghini, M.; Barbato, A.; Padovan, V.; Haeberlen, O.; Silvestri, M.; Detzel, T.; Meneghesso, G.; Zanoni, E. Degradation Mechanisms of GaN HEMTs With p-Type Gate Under Forward Gate Bias Overstress. IEEE Trans. Electron Devices 2018, 65, 2778–2783. [Google Scholar] [CrossRef]
- Sayadi, L.; Iannaccone, G.; Sicre, S.; Haberlen, O.; Curatola, G. Threshold Voltage Instability in p-GaN Gate AlGaN/GaN HFETs. IEEE Trans. Electron Devices 2018, 65, 2454–2460. [Google Scholar] [CrossRef]
- He, J.B.; Tang, G.F.; Chen, K.J. V-TH Instability of p-GaN Gate HEMTs Under Static and Dynamic Gate Stress. IEEE Electron Device Lett. 2018, 39, 1576–1579. [Google Scholar]
- Tang, X.; Li, B.K.; Moghadam, H.A.; Tanner, P.; Han, J.S.; Dimitrijev, S. Mechanism of Threshold Voltage Shift in p-GaN Gate AlGaN/GaN Transistors. IEEE Electron Device Lett. 2018, 39, 1145–1148. [Google Scholar] [CrossRef]
- Shi, Y.Y.; Zhou, Q.; Cheng, Q.; Wei, P.C.; Zhu, L.Y.; Wei, D.; Zhang, A.B.; Chen, W.J.; Zhang, B. Carrier Transport Mechanisms Underlying the Bidirectional V-TH Shift in p-GaN Gate HEMTs Under Forward Gate Stress. IEEE Trans. Electron Devices 2019, 66, 876–882. [Google Scholar] [CrossRef]
- Li, B.K.; Li, H.; Wang, J.N.; Tang, X. Asymmetric Bipolar Injection in a Schottky-Metal/p-GaN/AlGaN/GaN Device Under Forward Bias. IEEE Electron Device Lett. 2019, 40, 1389–1392. [Google Scholar] [CrossRef]
- Li, X.; Bakeroot, B.; Wu, Z.; Amirifar, N.; You, S.; Posthuma, N.; Zhao, M.; Liang, H.; Groeseneken, G.; Decoutere, S. Observation of Dynamic V-TH of p-GaN Gate HEMTs by Fast Sweeping Characterization. IEEE Electron Device Lett. 2020, 41, 577–580. [Google Scholar] [CrossRef]
- Wang, R.; Lei, J.M.; Guo, H.; Li, R.; Chen, D.J.; Lu, H.; Zhang, R.; Zheng, Y.D. V-T Shift and Recovery Mechanisms of p-GaN Gate HEMTs Under DC/AC Gate Stress Investigated by Fast Sweeping Characterization. IEEE Electron Device Lett. 2021, 42, 1508–1511. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, Y.; Zhou, Y.; Su, S.; Yan, S.; Guo, X.; Gao, H.; Zhan, X.; Ouyang, S.; Zhang, Z.; et al. Influence of the carrier behaviors in p-GaN gate on the threshold voltage instability in the normally off high electron mobility transistor. Appl. Phys. Lett. 2021, 119, 063501. [Google Scholar] [CrossRef]
- Li, X.; Posthuma, N.; Bakeroot, B.; Liang, H.; You, S.; Wu, Z.; Zhao, M.; Groeseneken, G.; Decoutere, S. Investigating the Current Collapse Mechanisms of p-GaN Gate HEMTs by Different Passivation Dielectrics. IEEE Tran. Power Electron. 2021, 36, 4927–4930. [Google Scholar] [CrossRef]
- Oeder, T.; Pfost, M. Gate-Induced Threshold Voltage Instabilities in p-Gate GaN HEMTs. IEEE Trans. Electron Devices 2021, 68, 4322–4328. [Google Scholar] [CrossRef]
- Elangovan, S.; Chang, E.Y.; Cheng, S. Analysis of Instability Behavior and Mechanism of E-Mode GaN Power HEMT with p-GaN Gate under Off-State Gate Bias Stress. Energies 2021, 14, 2170. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, S.; Li, S.; Li, N.; Tao, X.; Hou, B.; Zhou, B.; Wei, J.; Chen, Y.; Sun, W. Electrical performances degradations and physics based mechanisms under negative bias temperature instability stress for p-GaN gate high electron mobility transistors. Semicond. Sci. Technol. 2021, 36, 014007. [Google Scholar] [CrossRef]
- Murukesan, K.; Efthymiou, L.; Udrea, F. On the Challenges of Reliable Threshold Voltage Measurement in Ohmic and Schottky Gate p-GaN HEMTs. IEEE J. Electron Devices Soc. 2021, 9, 831–838. [Google Scholar] [CrossRef]
- Roschatt, P.M.; Pickering, S.; McMahon, R.A. Bootstrap Voltage and Dead Time Behavior in GaN DC-DC Buck Converter with a Negative Gate Voltage. IEEE Trans. Power Electron. 2016, 31, 7161–7170. [Google Scholar] [CrossRef]
- GaN Systems. GN012 Gate Driver Design with GaN E-HEMTs Application Note. 2022. Available online: http://www.gansystems.com (accessed on 30 May 2022).
- Infineon. Driving CoolGaN™ 600 V High Electron Mobility Transistors Application Note. 2022. Available online: https://www.infineon.com (accessed on 30 May 2022).
- GaN Systems. GS66502B Datasheet. 2022. Available online: http://www.gansystems.com (accessed on 30 May 2022).
- Infineon. IGT60R190D Datasheet. 2021. Available online: https://www.infineon.com (accessed on 30 May 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Guo, H.; Hou, Q.; Lei, J.; Wang, J.; Xue, J.; Liu, B.; Chen, D.; Lu, H.; Zhang, R.; et al. Evaluation on Temperature-Dependent Transient VT Instability in p-GaN Gate HEMTs under Negative Gate Stress by Fast Sweeping Characterization. Micromachines 2022, 13, 1096. https://doi.org/10.3390/mi13071096
Wang R, Guo H, Hou Q, Lei J, Wang J, Xue J, Liu B, Chen D, Lu H, Zhang R, et al. Evaluation on Temperature-Dependent Transient VT Instability in p-GaN Gate HEMTs under Negative Gate Stress by Fast Sweeping Characterization. Micromachines. 2022; 13(7):1096. https://doi.org/10.3390/mi13071096
Chicago/Turabian StyleWang, Rui, Hui Guo, Qianyu Hou, Jianming Lei, Jin Wang, Junjun Xue, Bin Liu, Dunjun Chen, Hai Lu, Rong Zhang, and et al. 2022. "Evaluation on Temperature-Dependent Transient VT Instability in p-GaN Gate HEMTs under Negative Gate Stress by Fast Sweeping Characterization" Micromachines 13, no. 7: 1096. https://doi.org/10.3390/mi13071096
APA StyleWang, R., Guo, H., Hou, Q., Lei, J., Wang, J., Xue, J., Liu, B., Chen, D., Lu, H., Zhang, R., & Zheng, Y. (2022). Evaluation on Temperature-Dependent Transient VT Instability in p-GaN Gate HEMTs under Negative Gate Stress by Fast Sweeping Characterization. Micromachines, 13(7), 1096. https://doi.org/10.3390/mi13071096