120 GHz Frequency-Doubler Module Based on GaN Schottky Barrier Diode
Abstract
:1. Introduction
2. Design and Fabrication of GaN SBD Chain
3. Frequency-Doubler Module
3.1. Design of 120 GHz Frequency Doubler
3.2. Fabrication of 120 GHz Frequency Doubler
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehdi, I.; Siles, J.V.; Lee, C.; Schlecht, E. THz Diode Technology: Status, Prospects, and Applications. Proc. IEEE 2017, 105, 990–1007. [Google Scholar] [CrossRef]
- Waters, J.W.; Froidevaux, L.; Harwood, R.S.; Jarnot, R.F.; Pickett, H.M.; Read, W.G.; Siegel, P.H.; Cofield, R.E.; Filipiak, M.J.; Flower, D.A.; et al. The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite. IEEE Trans. Geosci. Remote. Sens. 2006, 44, 1075–1092. [Google Scholar] [CrossRef]
- Choi, J.; Va, V.; Gonzalez-Prelcic, N.; Daniels, R.; Bhat, C.R.; Heath, R.W. Millimeter-Wave Vehicular Communication to Support Massive Automotive Sensing. IEEE Commun. Mag. 2016, 54, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Karpowicz, N.; Zhang, C.; Zhao, Y.; Zhang, X. Real-time nondestructive imaging with THz waves. Opt. Commun. 2008, 281, 1473–1475. [Google Scholar] [CrossRef]
- Hasch, J.; Topak, E.; Schnabel, R.; Zwick, T.; Weigel, R.; Waldschmidt, C. Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band. IEEE Trans. Microw. Theory. Tech. 2012, 60, 845–860. [Google Scholar] [CrossRef]
- Köhler, R.D.; Tredicucci, A.; Beltram, F.; Beere, H.E.; Linfield, E.H.; Davies, A.G.; Ritchie, D.A.; Iotti, R.C.; Rossi, F. Terahertz semiconductor heterostructure laser. Nature 2002, 417, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.S. Terahertz quantum-cascade lasers. Nat. Photonics 2007, 1, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Maestrini, A.; Mehdi, I.; Siles, J.V.; Ward, J.S.; Lin, R.; Thomas, B.; Lee, C.; Gill, J.; Schlecht, E.; Pearson, J.; et al. Design and Characterization of a Room Temperature All-Solid-State Electronic Source Tunable From 2.48 to 2.75 THz. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 177–185. [Google Scholar] [CrossRef]
- Siles, J.V.; Schlecht, E.; Lin, R.; Choonsup, L.; Mehdi, I. High-efficiency planar Schottky diode based submillimeter-wave frequency multipliers optimized for high-power operation. In Proceedings of the 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Hong Kong, China, 23–28 August 2015; p. 1. [Google Scholar]
- Cooper, K.B.; Monje, R.R.; Millan, L.; Lebsock, M.; Tanelli, S.; Siles, J.V.; Lee, C.; Brown, A. Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz. IEEE Geosci. Remote Sens. Lett. 2018, 15, 163–167. [Google Scholar] [CrossRef]
- Cojocari, O.; Moro-Melgar, D.; Oprea, I.; Hoefle, M.; Rickes, M. High-Power MM-Wave Sources based on Schottky Diodes. In Proceedings of the 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018. [Google Scholar]
- Schlecht, E.; Chattopadhyay, G.; Maestrini, A.; Pukala, D.; Gill, J.; Martin, S.; Maiwald, F.; Mehdi, I. A high-power wideband cryogenic 200 GHz Schottky ‘substrateless’ multiplier: Modelling design and results. In Proceedings of the Proceedings of 9th International Conference THz Electron, Charlottesville, VA, USA, 5 October 2001; pp. 485–494. [Google Scholar]
- Waliwander, T.; Fehilly, M.; O’Brien, E. An Ultra-High Efficiency High Power Schottky Varactor Frequency Doubler to 180–200 GHz. In Proceedings of the Global Symposium on Millimeter Waves (GSMM)/ESA Workshop on Millimetre-Wave Technology and Applications, Espoo, Finland, 6–8 June 2016; pp. 157–160. [Google Scholar]
- Chen, Z.; Wang, H.; Alderman, B.; Huggard, P.; Zhang, B.; Fan, Y. 190GHz high power input frequency doubler based on Schottky diodes and AlN substrate. Ieice Electron. Expr. 2016, 13, 20160981. [Google Scholar] [CrossRef] [Green Version]
- Mehdi, I.; Maestrini, A.; Pukala, D.; Chattopadhyay, G.; Bruston, J.; Schlecht, E.; Maiwald, F.; Martin, S.; Schlecht, E.; Chattopadhyay, G. Cryogenic Operation of GaAs Based Multiplier Chains to 400 GHz. In Proceedings of the 8th International Conference on Terahertz Electronics, Darmstadt, Germany, 28 September 2000. [Google Scholar]
- Cojocari, O.; Moro-Melgar, D.; Oprea, I. High-Power MM-Wave Frequency Multipliers. In Proceedings of the 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019. [Google Scholar]
- Moro-Melgar, D.; Cojocari, O.; Oprea, I. High Power High Efficiency 270-320 GHz Source Based on Discrete Schottky Diodes. In Proceedings of the 48th European Microwave Conference (EuMC), Madrid, Spain, 26–28 September 2018; pp. 1357–1360. [Google Scholar]
- Cojocari, O.; Oprea, I.; Gibson, H.; Walber, A. SubMM-Wave Multipliers by Film-Diode Technology. In Proceedings of the 46th European Microwave Conference (EuMC), London, UK, 4–6 October 2016; pp. 337–340. [Google Scholar]
- Montero-de-Paz, J.; Sobornytskyy, M.; Hoefle, M.; Cojocari, O. High Power 150 GHz Schottky based Varactor Doubler. In Proceedings of the Global Symposium on Millimeter Waves (GSMM), Espoo, Finland, 6–8 June 2016; pp. 161–164. [Google Scholar]
- Siles, J.V.; Cooper, K.B.; Lee, C.; Lin, R.H.; Chattopadhyay, G.; Mehdi, I. A New Generation of Room-Temperature Frequency-Multiplied Sources With up to 10× Higher Output Power in the 160-GHz-1.6-THz Range. IEEE IEEE Trans. Terahertz Sci. Technol. 2018, 8, 596–604. [Google Scholar] [CrossRef]
- Maestrini, A.; Ward, J.S.; Tripon-Canseliet, C.; Gill, J.J.; Lee, C.; Javadi, H.; Attopadhyay, G.C.; Mehdi, I. In-phase power-combined frequency triplers at 300 GHz. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 218–220. [Google Scholar] [CrossRef]
- Sites, J.V.; Lee, C.; Lin, R.; Chattopadhyay, G.; Reck, T.; Jung-Kubiak, C.; Mehdi, I.; Cooper, K.B. A High-Power 105-120 GHz Broadband On-Chip Power-Combined Frequency Tripler. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 157–159. [Google Scholar]
- Viegas, C.; Liu, H.; Powell, J.; Sanghera, H.; Whimster, A.; Donoghue, L.; Huggard, P.G.; Alderman, B. A 180-GHz Schottky Diode Frequency Doubler with Counter-Rotated E-Fields to Provide In-Phase Power-Combining. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 518–520. [Google Scholar] [CrossRef]
- Zhang, B.; Ji, D.; Fang, D.; Liang, S.; Fan, Y.; Chen, X. A Novel 220-GHz GaN Diode On-Chip Tripler with High Driven Power. IEEE Electron Device Lett. 2019, 40, 780–783. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, S.; Lv, Y.; Yang, D.; Fu, X.; Song, X.; Gu, G.; Xu, P.; Guo, Y.; Bu, A.; et al. High-Power 300 GHz Solid-State Source Chain Based on GaN Doublers. IEEE Electron Device Lett. 2021, 42, 1588–1591. [Google Scholar] [CrossRef]
- Kaganer, V.M.; Brandt, O.; Trampert, A.; Ploog, K.H. X-ray diffraction peak profiles from threading dislocations in GaN epitaxial films. Phys. Rev. B 2005, 72, 045423. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Ji, D.; Min, Y.; Fan, Y.; Chen, X. A High-Efficiency 220GHz Doubler Based on the Planar Schottky Varactor Diode. J. of Electron. Mater. 2019, 48, 3603–3611. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Zhang, Y.; Cui, J.; Li, Y.; Xu, Y.; Xu, R. A 135-190 GHz Broadband Self-Biased Frequency Doubler using Four-Anode Schottky Diodes. Micromachines 2019, 10, 227. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Qi, L.; Liu, X.; Zhou, J.; Zhang, D.; Jin, Z. The Design of Terahertz Monolithic Integrated Frequency Multipliers Based on Gallium Arsenide Material. Micromachines 2020, 11, 336. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Song, X.; Zhang, L.; Lv, Y.; Wang, Y.; Wei, B.; Guo, Y.; Gu, G.; Wang, B.; Cai, S.; et al. A 177-183 GHz High-Power GaN-Based Frequency Doubler with Over 200 mW Output Power. IEEE Electron Device Lett. 2020, 41, 669–672. [Google Scholar] [CrossRef]
Materials | GaAs SBD [27] | GaN SBD |
---|---|---|
Thickness of epitaxial layer (nm) | 300 | 150 |
Doping concentration of epitaxial layer (cm−3) | 10−17 | 10−17 |
Series resistance (Ω) | 3 | 8.8 |
Zero bias capacitance (fF) | 40 | 30.3 |
Barrier voltage (V) | 0.9 | 0.78 |
Breakdown voltage (V at µA) | 10 | 18.3 |
Band gap width (eV) | 1.42 | 3.4 |
Ideal factor | 1.2 | 1.24 |
Electron mobility (cm2V−1s−1) | 8000 | 900 |
Ref. | Diode Material | Multiplying Factor | Frequency Band (GHz) | Input Power (mW) | Output Power (mW) | Conversion Efficiency | Number of Anodes |
---|---|---|---|---|---|---|---|
[9] | GaAs | ×2 | 170–200 | 500 | 125 | 26% | 6 |
[12] | GaAs | ×2 | 184–212 | 180 | 54 | 30% | 6 |
[14] | GaAs | ×2 | 190–198 | 260 | 20 | 7.7% | 6 |
[27] | GaAs | ×2 | 190–235 | 89 | 21.4 | 24% | 6 |
[28] | GaAs | ×2 | 135–190 | 174 | 13 | 7.5% | 4 |
[29] | GaAs | ×3 | 210–218 | 300 | 10.5 | 3.5% | 6 |
[24] | GaN | ×3 | 200–220 | 1100 | 17.5 | 1.6% | 8 |
[30] * | GaN | ×2 | 175–185 | 2140 | 244 | 11.4% | 8 |
This work | GaN | ×2 | 117–125 | 500 | 15.1 | 3% | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Liang, Z.; Meng, J.; Liu, Y.; Wang, H.; Yan, C.; Wu, Z.; Liu, Y.; Zhang, D.; Wang, X.; et al. 120 GHz Frequency-Doubler Module Based on GaN Schottky Barrier Diode. Micromachines 2022, 13, 1172. https://doi.org/10.3390/mi13081172
Liu H, Liang Z, Meng J, Liu Y, Wang H, Yan C, Wu Z, Liu Y, Zhang D, Wang X, et al. 120 GHz Frequency-Doubler Module Based on GaN Schottky Barrier Diode. Micromachines. 2022; 13(8):1172. https://doi.org/10.3390/mi13081172
Chicago/Turabian StyleLiu, Honghui, Zhiwen Liang, Jin Meng, Yuebo Liu, Hongyue Wang, Chaokun Yan, Zhisheng Wu, Yang Liu, Dehai Zhang, Xinqiang Wang, and et al. 2022. "120 GHz Frequency-Doubler Module Based on GaN Schottky Barrier Diode" Micromachines 13, no. 8: 1172. https://doi.org/10.3390/mi13081172
APA StyleLiu, H., Liang, Z., Meng, J., Liu, Y., Wang, H., Yan, C., Wu, Z., Liu, Y., Zhang, D., Wang, X., & Zhang, B. (2022). 120 GHz Frequency-Doubler Module Based on GaN Schottky Barrier Diode. Micromachines, 13(8), 1172. https://doi.org/10.3390/mi13081172