Comparative Characterization of NWFET and FinFET Transistor Structures Using TCAD Modeling
Abstract
:1. Introduction
2. Device under Test. TCAD Setup
- Charge Carrier Transport and Temperature-Hydrodynamic Model.
- Quantization-Density Gradient Model.
- Recombination Model-SRH (DopingDep).
- BandGap Narrowing Model-Slotboom.
3. Electrical Simulation Results
4. Thermal Simulation Results
- (1)
- dissipated the heat toward the thermal contact;
- (2)
- operate in the identical thermal condition with similar temperature.
- (1)
- only the upper wire can dissipate straight toward the thermal contact;
- (2)
- the lower wires situated in the depths of construction are heated more than the upper wire.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yeric, G. Moore’s Law at 50: Are we planning for retirement? In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015. [Google Scholar]
- Grenouillet, L.; Liu, Q.; Wacquez, R.; Morin, P.; Loubet, N.; Cooper, D.; Pofelski, A.; Weng, W.; Bauman, F.; Gribelyuk, M.; et al. UTBB FDSOI scaling enablers for the 10nm node. In Proceedings of the IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Monterey, CA, USA, 7–10 October 2013. [Google Scholar]
- Seo, K.I.; Haran, B.; Gupta, D.; Guo, D.; Standaert, T.; Xie, R.; Shang, H.; Alptekin, E.; Bae, D.I.; Bae, G.; et al. A 10 nm platform technology for low power and high performance application featuring FINFET devices with multi workfunction gate stack on bulk and SOI. In Proceedings of the Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, HI, USA, 9–12 June 2014. [Google Scholar]
- Appenzeller, J.; Knoch, J.; Bjork, M.T.; Riel, H.; Schmid, H.; Riess, W. Toward Nanowire Electronics. IEEE Trans. Electron Devices 2008, 55, 2827–2845. [Google Scholar] [CrossRef]
- Zheng, P.; Connelly, D.; Ding, F.; Liu, T.J.K. FinFET Evolution Toward Stacked-Nanowire FET for CMOS Technology Scaling. IEEE Trans. Electron Devices 2015, 62, 3945–3950. [Google Scholar] [CrossRef]
- Sicard, E. Introducing 10-nm FinFET Technology in Microwind. HAL Open Science. 2017. Available online: https://hal.archives-ouvertes.fr/hal-01551695/document (accessed on 29 July 2022).
- Bohr, M.; Mistry, K. Intel’s Revolutionary 22 nm Transistor Technology. 2011. Available online: https://www.intel.com/content/dam/www/public/us/en/documents/presentation/revolutionary-22nm-transistor-technology-presentation.pdf (accessed on 29 July 2022).
- SK hynix Started Full-Scale Mass Production of 16nm NAND Flash. Available online: https://news.skhynix.com/sk-hynix-started-full-scale-mass-production-of-16nm-nand-flash/ (accessed on 29 July 2022).
- Wu, S.Y.; Lin, C.Y.; Chiang, M.C.; Liaw, J.J.; Cheng, J.Y.; Yang, S.H.; Liang, M.; Miyashita, T.; Tsai, C.H.; Hsu, B.C. A 16nm FinFET CMOS technology for mobile SoC and computing applications. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 9–11 December 2013. [Google Scholar]
- Samsung Electronics on Track for 10 nm FinFET Process Technology Production Ramp-up. Available online: https://news.samsung.com/global/samsung-electronics-on-track-for-10nm-finfet-process-technology-production-ramp-up (accessed on 29 July 2022).
- Wu, S.Y.; Lin, C.Y.; Chiang, M.C.; Liaw, J.J.; Cheng, J.Y.; Yang, S.H.; Tsai, C.H.; Chen, P.N.; Miyashita, T.; Chang, C.H.; et al. A 7nm CMOS platform technology featuring 4th generation FinFET transistors with a 0.027 um2 high density 6-T SRAM cell for mobile SoC applications. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016. [Google Scholar]
- Samsung Completes Development of 5 nm EUV Process Technology. Available online: https://www.anandtech.com/show/14231/samsung-completes-development-of-5-nm-euv-process-technology (accessed on 29 July 2022).
- Li, B.; Huang, Y.B.; Yang, L.; Zhang, Q.Z.; Zheng, Z.S.; Li, B.H.; Zhu, H.P.; Bu, J.H.; Yin, H.X.; Luo, J.J.; et al. Process variation dependence of total ionizing dose effects in bulk nFinFETs. Microelectron. Reliab. 2018, 88–90, 946–951. [Google Scholar] [CrossRef]
- Sell, B.; Bigwood, B.; Cha, S.; Chen, Z.; Dhage, P.; Fan, P.; Giraud-Carrier, M.; Kar, A.; Karl, E.; Ku, C.J.; et al. 22FFL: A high performance and ultra low power FinFET technology for mobile and RF applications. In Proceeding of 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017. [Google Scholar]
- Sicard, E. Introducing 14-nm FinFET Technology in Microwind. HAL Open Science. 2017. Available online: https://hal.archives-ouvertes.fr/hal-01541171/document (accessed on 29 July 2022).
- Sicard, E. Introducing 7-nm FinFET Technology in Microwind. HAL Open Science. 2017. Available online: https://hal.archives-ouvertes.fr/hal-01558775/document (accessed on 29 July 2022).
- Sicard, E.; Trojman, L. Introducing 5-nm FinFET Technology in Microwind. HAL Open Science. 2021. Available online: https://hal.archives-ouvertes.fr/hal-03254444/document (accessed on 29 July 2022).
- Kalaivani, R.; Pravin, J.C.; Kumar, S.A.; Sridevi, R. Design and Simulation of 22 nm FinFET Structure Using TCAD. In Proceedings of the 5th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 5–6 March 2020. [Google Scholar]
- Karner, M.; Stanojević, Z.; Kernstock, C.; Cheng-Karner, H.W.; Baumgartner, O. Hierarchical TCAD device simulation of FinFETs. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Washington, DC, USA, 9–11 September 2015. [Google Scholar]
- Mishra, S.; Wong, H.Y.; Tiwari, R.; Chaudhary, A.; Rao, R.; Moroz, V.; Mahapatra, S. TCAD-Based Predictive NBTI Framework for Sub-20-nm Node Device Design Considerations. IEEE Trans. Electron Devices 2016, 63, 4624–4631. [Google Scholar] [CrossRef]
- Tiwari, R.; Parihar, N.; Thakor, K.; Wong, H.Y.; Motzny, S.; Choi, M.; Moroz, V.; Mahapatra, S. A 3-D TCAD Framework for NBTI—Part I: Implementation Details and FinFET Channel Material Impact. IEEE Trans. Electron Devices 2019, 66, 2086–2092. [Google Scholar] [CrossRef]
- Favia, P.; Richard, O.; Eneman, G.; Mertens, H.; Arimura, H.; Capogreco, E.; Hikavyy, A.; Witters, L.; Kundu, P.; Loo, R.; et al. TEM Investigations of Gate-All-Around Nanowire Devices. Available online: https://fischione.com/uploads/Files/JA054.pdf (accessed on 29 July 2022).
- 5 Nanometer Transistors Inching Their Way into Chips. Available online: https://www.ibm.com/blogs/think/2017/06/5-nanometer-transistors (accessed on 29 July 2022).
- Jain, I.; Gupta, A.; Hook, T.B.; Dixit, A. Modeling of Effective Thermal Resistance in Sub-14-nm Stacked Nanowire and FinFETs. IEEE Trans. Electron Devices 2018, 65, 4238–4244. [Google Scholar] [CrossRef]
- Prasad, C.; Jiang, L.; Singh, D.; Agostinelli, M.; Auth, C.; Bai, P.; Eiles, T.; Hicks, J.; Jan, C.H.; Mistry, K.; et al. Self-heat reliability considerations on Intel’s 22nm Tri-Gate technology. In Proceedings of the IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 14–18 April 2013. [Google Scholar]
- Novak, S.; Parker, C.; Becher, D.; Liu, M.; Agostinelli, M.; Chahal, M.; Packan, P.; Nayak, P.; Ramey, S.; Natarajan, S. Transistor aging and reliability in 14 nm tri-gate technology. In Proceedings of the IEEE International Reliability Physics Symposium, Monterey, CA, USA, 19–23 April 2015. [Google Scholar]
- TSMC Plots an Aggressive Course for 3 nm Lithography and Beyond. Available online: https://www.extremetech.com/computing/314204-tsmc-plots-an-aggressive-course-for-3nm-lithography-and-beyond (accessed on 29 July 2022).
- Intel Introduces New RibbonFET and PowerVia Technologies. Available online: https://www.intel.com/content/www/us/en/corporate/usa-chipmaking/news-and-resources/video-intel-intros-ribbonfet-powervia-technologies.html (accessed on 29 July 2022).
- Samsung Begins Chip Production Using 3 nm Process Technology with GAA Architecture. Available online: https://news.samsung.com/global/samsung-begins-chip-production-using-3nm-process-technology-with-gaa-architecture (accessed on 29 July 2022).
- Gaillardon, P.-M.; Amarù, L.G.; Bobba, S.; De Marchi, M.; Sacchetto, D.; Leblebici, Y.; De Micheli, G. Vertically-stacked double-gate nanowire FETs with controllable polarity: From devices to regular ASICs. In Proceedings of the 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE); Grenoble, France: 18–22 March 2013, 22 March 2013. [Google Scholar]
- Veloso, A.; Hellings, G.; Cho, M.J.; Simoen, E.; Devriendt, K.; Paraschiv, V.; Vecchio, E.; Tao, Z.; Versluijs, J.J.; Souriau, L.; et al. Gate-all-around NWFETs vs. triple-gate FinFETs: Junctionless vs. extensionless and conventional junction devices with controlled EWF modulation for multi-VT CMOS. In Proceedings of the 2015 Symposium on VLSI Technology (VLSI Technology), Kyoto, Japan, 16–18 June 2015. [Google Scholar]
- Huynh-Bao, T.; Sakhare, S.; Ryckaert, J.; Spessot, A.; Verkest, D.; Mocuta, A. SRAM designs for 5nm node and beyond: Opportunities and challenges. In Proceedings of the 2017 IEEE International Conference on IC Design and Technology (ICICDT), Austin, TX, USA, 23–25 May 2017. [Google Scholar]
- Yan, H.; Choe, H.; Nam, S.; Hu, Y.; Das, S.; Klemic, J.F.; Ellenbogen, J.C.; Lieber, C.M. Programmable nanowire circuits for nanoprocessors. Nature 2017, 470, 240–244. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, R.; Pu, H.; Guo, X.; Chang, J.; Zhou, G.; Mao, S.; Kron, M.; Chen, J. Field-Effect Transistor Biosensor for Rapid Detection of Ebola Antigen. Sci. Rep. 2017, 7, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Chae, E.J.; Park, S.J.; Choi, J.W. Label-free detection of γ-aminobutyric acid based on silicon nanowire biosensor. Nano Converg. 2019, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Ambhorkar, P.; Wang, Z.; Ko, H.; Lee, S.; Koo, K.I.; Kim, K.; Cho, D.I. Nanowise-based biosensors: From growth to applications. Micromachines 2018, 9, 679. [Google Scholar] [CrossRef] [PubMed]
- Qing, Q.; Pal, S.K.; Tian, B.; Duan, X.; Timko, B.P.; Cohen-Karni, T.; Murthy, V.N.; Lieber, C.M. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl. Acad. Sci. USA 2010, 107, 1882–1887. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M. Validation of 30 nm process simulation using 3D TCAD for FinFET devices. Semicond. Sci. Technol. 2006, 21, 1111–1120. [Google Scholar] [CrossRef]
- Donati Guerrieri, S.; Bonani, F.; Ghione, G. A Novel TCAD Approach to Temperature Dependent DC FinFET Variability Analysis. In Proceedings of the 2018 13th European Microwave Integrated Circuits Conference (EuMIC), Madrid, Spain, 23–25 September 2018. [Google Scholar]
- Bhoj, A.N.; Joshi, R.V.; Jha, N.K. 3-D-TCAD-Based Parasitic Capacitance Extraction for Emerging Multigate Devices and Circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2013, 21, 2094–2105. [Google Scholar] [CrossRef]
- Jain, A.; Inge, S.V.; Ganguly, U. An Accurate Structure Generation and Simulation of LER affected NWFET. In Proceedings of the 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Monterey, CA, USA, 6–21 April 2020. [Google Scholar]
- Gaillardin, M.; Raine, M.; Martinez, M.; Duhamel, O.; Riffaud, J.; Lagutere, T.; Marcella, C.; Paillet, P.; Richard, N.; Vinet, M.; et al. Analysis of Nanowire Field-Effect Transistors SET Response: Geometrical Considerations. IEEE Trans. Nucl. Sci. 2019, 66, 1410–1417. [Google Scholar] [CrossRef]
- Mishra, S.; Wong, H.Y.; Tiwari, R.; Chaudhary, A.; Parihar, N.; Rao, R.; Motzny, S.; Moroz, V.; Mahapatra, S. Predictive TCAD for NBTI stress-recovery in various device architectures and channel materials. In Proceedings of the 2017 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2–6 April 2017. [Google Scholar]
- Dupré, C.; Hubert, A.; Becu, S.; Jublot, M.; Maffini-Alvaro, V.; Vizioz, C.; Aussenac, F.; Arvet, C.; Barnola, S.; Hartmann, J.M.; et al. 15 nm-diameter 3D stacked nanowires with independent gates operation: ΦFET. In Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008. [Google Scholar]
- Badami, O.; Driussi, F.; Palestri, P.; Selmi, L.; Esseni, D. Performance comparison for FinFETs, Nanowire and Stacked Nanowires FETs: Focus on the influence of Surface Roughness and Thermal Effects. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017. [Google Scholar]
- TCAD Sentaurus User Manual: Sentaurus™ Device User Guide Version N-2017.09; Synopsys: Mountain View, CA, USA, 2017.
- Klaassen, D.B.M. A unified mobility model for device simulation—i. model equations and concentration dependence. Solid-State Electron. 1992, 35, 953–959. [Google Scholar] [CrossRef]
- Mujtaba, S.A. Advanced Mobility Models for Design and Simulation of Deep Submicrometer MOSFETs. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1995. [Google Scholar]
- Shur, M.S. Low ballistic mobility in submicron hemts. IEEE Electron Device Lett. 2002, 23, 511–513. [Google Scholar] [CrossRef]
- Yirak, M.G.; Chaujar, R. TCAD Analysis and Modelling of Gate-Stack Gate All Around Junctionless Silicon NWFET Based Bio-Sensor for Biomedical Application. In Proceedings of the 2020 IEEE VLSI Device, Circuit and System Conference (VLSI-DCS), Kolkata, India, 18–19 July 2020. [Google Scholar]
- Petrosyants, K.O.; Silkin, D.S.; Popov, D.A. TCAD Modeling of Nanoscale Bulk FinFET Structures with Account of Radiation Exposure. Russ. Microelectron. 2022, 51, 7. [Google Scholar] [CrossRef]
- Petrosyants, K.O.; Silkin, D.S.; Popov, D.A. Evaluation of the effect of FinFET structure parameters on electrical characteristics using TCAD modeling tools. Russ. Microelectron. 2022, 51, 8. [Google Scholar]
- Hong, K.H.; Kim, J.; Lee, S.H.; Jin, Y.G.; Park, S.I.; Shin, M.; Suk, S.D.; Yeo, K.H.; Li, M.; Kim, D.W.; et al. Channel Engineering of Silicon Nanowire Field Effect Transistor: Non-Equilibrium Green’s Function Study. In Proceedings of the 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings, Shanghai, China, 23–26 October 2006. [Google Scholar]
- Petrosyants, K.O.; Silkin, D.S.; Popov, D.A. Comparison of MOSFET and FinFET Thermal Characteristics. In Proceedings of the 2021 Problems of Perspective Micro- and Nanoelectronic Systems Development, Moskow, Russia, 1 September–30 October 2021. [Google Scholar]
Type | Ioff, pA | SS, mV/Decade | Vth, mV | Ion, µA |
---|---|---|---|---|
NWFET (each side 14 nm) | 146 | 64 | 178 | 200 |
FinFET (fin height 42 nm) | 9 | 70 | 258 | 148 |
FinFET (fin height 77 nm) | 12 | 70 | 252 | 195 |
NWFET Structure Parameters | Ioff, pA | SS, mV/dec | Vth, mV | Ion, µA |
---|---|---|---|---|
Nch = cm−3, EOT = 1.8 nm, WF = 4.205 eV, Wnw = 14 nm | 146 | 64 | 178 | 200 |
Nch = cm−3, EOT = 1.8 nm, WF = 4.205 eV, Wnw = 14 nm | 8 | 62 | 248 | 177 |
Tox | 1.5 nm | 2.0 nm | 2.5 nm | 3.0 nm | 3.5 nm |
---|---|---|---|---|---|
SS | 76.7 | 85.5 | 96.7 | 111.2 | 130.1 |
Type | Thermal Conditions | Tmax, K | Ioff, pA | SS, mV/Decade | Vth, mV | Ion, µA |
---|---|---|---|---|---|---|
No SelfHeating | 300 | 146 | 64 | 178 | 200 | |
NWFET | No ThermRes | 341 | 146 | 64 | 178 | 187 |
ThermRes 1.46 × 106 | 402 | 146 | 64 | 178 | 170 | |
No SelfHeating | 300 | 9 | 70 | 258 | 148 | |
FinFET | No ThermRes | 328 | 9 | 70 | 258 | 139 |
ThermRes 1.46 × 106 | 371 | 9 | 70 | 258 | 130 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrosyants, K.O.; Silkin, D.S.; Popov, D.A. Comparative Characterization of NWFET and FinFET Transistor Structures Using TCAD Modeling. Micromachines 2022, 13, 1293. https://doi.org/10.3390/mi13081293
Petrosyants KO, Silkin DS, Popov DA. Comparative Characterization of NWFET and FinFET Transistor Structures Using TCAD Modeling. Micromachines. 2022; 13(8):1293. https://doi.org/10.3390/mi13081293
Chicago/Turabian StylePetrosyants, Konstantin O., Denis S. Silkin, and Dmitriy A. Popov. 2022. "Comparative Characterization of NWFET and FinFET Transistor Structures Using TCAD Modeling" Micromachines 13, no. 8: 1293. https://doi.org/10.3390/mi13081293
APA StylePetrosyants, K. O., Silkin, D. S., & Popov, D. A. (2022). Comparative Characterization of NWFET and FinFET Transistor Structures Using TCAD Modeling. Micromachines, 13(8), 1293. https://doi.org/10.3390/mi13081293