Modular Microfluidics: Current Status and Future Prospects
Abstract
:1. Introduction
2. Current Modularization Strategies
2.1. Multilayer Stacking
2.2. Backplate Positioning
2.3. Magnet-Aided Connection
2.4. Electronics Analogs
2.5. Coaxial Systems
2.6. Shape Complementarity
2.7. Threaded Fitting
3. Manufacturability of Microfluidic Modules
3.1. Additive Manufacturing
3.1.1. Fused Deposition Modeling (FDM)
3.1.2. Stereolithography (SL)
3.1.3. Photopolymer Inkjet 3D Printing
3.2. Subtractive Manufacturing
3.2.1. Micro-Milling
3.2.2. Laser Ablation
3.2.3. Polymer Processes with Subtractive Manufactured Templates
4. Applications Scenarios of Modular Microfluidics
4.1. Modular Microfluidics for Ease of Design
4.2. Modular Microfluidics for Arbitrary Combination
4.3. Modular Microfluidics for High Parallelization
4.4. Modular Microfluidics for Unlimited Extension
4.5. Modular Microfluidics for Parameter Control
4.6. Modular Microfluidics for On-Demand Reconfiguration and Instrumentation
5. Challenges of Modular Microfluidics
5.1. Arbitrariness of Connection
5.2. Dead Volume and Resulting Waste
5.3. Configuration Convenience
5.4. Material and Process Limitations
6. Conclusions and Outlook
- In terms of the breadth of modular microfluidic systems, innovative forms of modular microfluidic systems can be further studied, such as paper-based modular microfluidics [109,110], digital modular microfluidics [111], template modularity-based microfluidics [112], and improved inter-module connections using advanced materials such as self-healing hydrogels [113,114] and superhydrophobic materials [115];
- In terms of the depth of modular microfluidic techniques, by tracking the latest advancement in technology, the use of novel processing techniques and chip materials should further improve the aligning accuracy and performance of modular systems, expanding the range of available modular design. At the same time, the arbitrariness of module connection should be further improved (such as eliminating the need to distinguish between male and female connectors), improving the performance and ease of use of the modular microfluidic systems;
- In terms of applications, versatile modular blocks with sensors and actuators should be implemented for further exploration of meaningful modular microfluidic applications, e.g., replacing currently used nonportable, expertise-requiring analytical instruments with fully modular, portable microfluidic equipment for easy setup of point-of-care testing or rapid response to public health emergencies;
- In the aspect of fundamental research, methods and theories for on-demand reconfiguration of the modular blocks and improvement of the performance of modular interconnections should be studied or adapted from other fields, which will be beneficial for general microfluidic systems;
- • In terms of industrialization, academia should work closely with industry to develop common standards for modular microfluidic systems while developing reliable and easy-to-use modular microfluidic systems to facilitate the dissemination and implementation of technologies.
Author Contributions
Funding
Conflicts of Interest
References
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Sun, J.; Warden, A.R.; Ding, X. Recent advances in microfluidics for drug screening. Biomicrofluidics 2019, 13, 061503. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, L.; Zhang, H.; Shang, L.; Zhao, Y. Microfluidics for Drug Development: From Synthesis to Evaluation. Chem. Rev. 2021, 121, 7468–7529. [Google Scholar] [CrossRef] [PubMed]
- Tong, A.; Voronov, R. A Minireview of Microfluidic Scaffold Materials in Tissue Engineering. Front. Mol. Biosci. 2021, 8, 783268. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, S.; Davis, R.W.; Saha, A.K. Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions. Front. Bioeng. Biotechnol. 2021, 8, 602659. [Google Scholar] [CrossRef] [PubMed]
- Elvira, K.S.; i Solvas, X.C.; Wootton, R.C.R.; deMello, A.J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 2013, 5, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zhang, Y.S.; Santiago, G.T.-D.; Alvarez, M.M.; Ribas, J.; Jonas, S.J.; Weiss, P.S.; Andrews, A.M.; Aizenberg, J.; Khademhosseini, A. Interplay between materials and microfluidics. Nat. Rev. Mater. 2017, 2, 17016. [Google Scholar] [CrossRef]
- Illath, K.; Kar, S.; Gupta, P.; Shinde, A.; Wankhar, S.; Tseng, F.-G.; Lim, K.-T.; Nagai, M.; Santra, T.S. Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials 2022, 280, 121247. [Google Scholar] [CrossRef]
- Pinheiro, L.B.; Coleman, V.A.; Hindson, C.M.; Herrmann, J.; Hindson, B.J.; Bhat, S.; Emslie, K.R. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 2012, 84, 1003–1011. [Google Scholar] [CrossRef]
- Volpatti, L.R.; Yetisen, A.K. Commercialization of microfluidic devices. Trends Biotechnol. 2014, 32, 347–350. [Google Scholar] [CrossRef]
- Paratore, F.; Bacheva, V.; Bercovici, M.; Kaigala, G.V. Reconfigurable microfluidics. Nat. Rev. Chem. 2021, 6, 70–80. [Google Scholar] [CrossRef]
- Fan, Y.-Q.; Wang, H.-L.; Gao, K.-X.; Liu, J.-J.; Chai, D.-P.; Zhang, Y.-J. Applications of Modular Microfluidics Technology. Chin. J. Anal. Chem. 2018, 46, 1863–1871. [Google Scholar] [CrossRef]
- McDonald, J.C.; Whitesides, G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 2002, 35, 491–499. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.C.; Duffy, D.C.; Anderson, J.R.; Chiu, D.T.; Wu, H.K.; Schueller, O.J.A.; Whitesides, G.M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000, 21, 27–40. [Google Scholar] [CrossRef]
- Roy, S.; Yue, C.Y.; Wang, Z.Y.; Anand, L. Thermal bonding of microfluidic devices: Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers. Sens. Actuators B Chem. 2012, 161, 1067–1073. [Google Scholar] [CrossRef]
- González, C.; Collins, S.D.; Smith, R.L. Fluidic interconnects for modular assembly of chemical microsystems. Sens. Actuators B Chem. 1998, 49, 40–45. [Google Scholar] [CrossRef]
- Grodzinski, P.; Yang, J.; Liu, R.H.; Ward, M.D. A modular microfluidic system for cell pre-concentration and genetic sample preparation. Biomed. Microdevices 2003, 5, 303–310. [Google Scholar] [CrossRef]
- Qiu, J.J.; Gao, Q.; Zhao, H.M.; Fu, J.Z.; He, Y. Rapid Customization of 3D Integrated Microfluidic Chips via Modular Structure-Based Design. ACS Biomater. Sci. Eng. 2017, 3, 2606–2616. [Google Scholar] [CrossRef]
- Lei, M.; Binfeng, H.; Jiangjiang, Z.; Xingyu, J. A hinge-based aligner for fast, large-scale assembly of microfluidic chips. Biomed. Microdevices 2019, 21, 69. [Google Scholar]
- Glick, C.C.; Srimongkol, M.T.; Schwartz, A.J.; Zhuang, W.S.; Lin, J.C.; Warren, R.H.; Tekell, D.R.; Satamalee, P.A.; Lin, L.W. Rapid assembly of multilayer microfluidic structures via 3D-printed transfer molding and bonding. Microsyst. Nanoeng. 2016, 2, 16063. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.Y.; Han, K.; Barrett, D.O.; Park, S.; Soper, S.A.; Murphy, M.C. Accurate, predictable, repeatable micro-assembly technology for polymer, microfluidic modules. Sens. Actuators B Chem. 2018, 254, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Po, Y. SmartBuild: A truly plug-n-play modular microfluidic system. Lab Chip 2008, 8, 1374–1378. [Google Scholar]
- Po Ki, Y.; Bliss, J.T.; Thompson, C.C.; Peterson, R.C. Multidimensional modular microfluidic system. Lab Chip 2009, 9, 3303–3305. [Google Scholar]
- Hill, D.A.; Anderson, L.E.; Hill, C.J.; Mostaghim, A.; Rodgers, V.G.; Grover, W.H. MECs: “Building Blocks” for Creating Biological and Chemical Instruments. PLoS ONE 2016, 11, e0158706. [Google Scholar] [CrossRef] [PubMed]
- Vittayarukskul, K.; Lee, A.P. A truly Lego®-like modular microfluidics platform. J. Micromech. Microeng. 2017, 27, 035004. [Google Scholar] [CrossRef]
- Owens, C.E.; Hart, A.J. High-precision modular microfluidics by micromilling of interlocking injection-molded blocks. Lab Chip 2018, 18, 890–901. [Google Scholar] [CrossRef]
- Atencia, J.; Cooksey, G.A.; Jahn, A.; Zook, J.M.; Vreeland, W.N.; Locascio, L.E. Magnetic connectors for microfluidic applications. Lab Chip 2010, 10, 246–249. [Google Scholar] [CrossRef]
- Yuen, P.K. A reconfigurable stick-n-play modular microfluidic system using magnetic interconnects. Lab Chip 2016, 16, 3700–3707. [Google Scholar] [CrossRef]
- Ong, L.J.Y.; Ching, T.; Chong, L.H.; Arora, S.; Li, H.; Hashimoto, M.; Dasgupta, R.; Yuen, P.K.; Toh, Y.-C. Self-aligning Tetris-Like (TILE) modular microfluidic platform for mimicking multi-organ interactions. Lab Chip 2019, 19, 2178–2191. [Google Scholar] [CrossRef]
- Abhyankar, V.V.; Wu, M.; Koh, C.Y.; Hatch, A.V. A Reversibly Sealed, Easy Access, Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces. PLoS ONE 2016, 11, e0156341. [Google Scholar]
- Giménez-Gómez, P.; Fernández-Sánchez, C.; Baldi, A. Microfluidic Modules with Integrated Solid-State Sensors for Reconfigurable Miniaturized Analysis Systems. ACS Omega 2019, 4, 6192–6198. [Google Scholar] [CrossRef]
- Shaikh, K.A.; Ryu, K.S.; Goluch, E.D.; Nam, J.M.; Liu, J.; Thaxton, C.S.; Chiesl, T.N.; Barron, A.E.; Lu, Y.; Mirkin, C.A.; et al. A modular microfluidic architecture for integrated biochemical analysis. Proc. Natl. Acad. Sci. USA 2005, 102, 9745–9750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skafte-Pedersen, P.; Sip, C.G.; Folch, A.; Dufva, M. Modular microfluidic systems using reversibly attached PDMS fluid control modules. J. Micromech. Microeng. 2013, 23, 055011. [Google Scholar] [CrossRef]
- Perozziello, G.; Simone, G.; Candeloro, P.; Gentile, F.; Malara, N.; Larocca, R.; Coluccio, M.; Pullano, S.A.; Tirinato, L.; Geschke, O.; et al. A fluidic motherboard for multiplexed simultaneous and modular detection in microfluidic systems for biological application. Micro Nanosyst. 2010, 2, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Brammer, M.; Megnin, C.; Voigt, A.; Kohl, M.; Mappes, T. Modular optoelectronic microfluidic backplane for fluid analysis systems. J. Microelectromech. Syst. 2013, 22, 462–470. [Google Scholar] [CrossRef]
- Yi-Wen, C.; Hong, W.; Hupert, M.; Witek, M.; Dharmasiri, U.; Pingle, M.R.; Barany, F.; Soper, S.A. Modular microfluidic system fabricated in thermoplastics for the strainspecific detection of bacterial pathogens. Lab Chip 2012, 12, 3348–3355. [Google Scholar]
- Dekker, S.; Isgor, P.K.; Feijten, T.; Segerink, L.I.; Odijk, M. From chip-in-a-lab to lab-on-a-chip: A portable Coulter counter using a modular platform. Microsyst. Nanoeng. 2018, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, K.C.; Thompson, B.; Malmstadt, N. Discrete elements for 3D microfluidics. Proc. Natl. Acad. Sci. USA 2014, 111, 15013–15018. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, S.; Jaffery, H.; Doran, D.; Hezwani, M.; Robbins, P.J.; Yoshida, M.; Cronin, L. Customizable 3D Printed ’Plug and Play’ Millifluidic Devices for Programmable Fluidics. PLoS ONE 2015, 10, e0141640. [Google Scholar] [CrossRef]
- Bandulasena, M.V.; Vladisavljevi, G.T.; Benyahia, B. Versatile reconfigurable glass capillary microfluidic devices with Lego inspired blocks for drop generation and micromixing. J. Colloid Interface Sci. 2019, 542, 23–32. [Google Scholar] [CrossRef]
- Lai, X.; Shi, Z.; Pu, Z.; Zhang, P.; Zhang, X.; Yu, H.; Li, D. A Rubik’s microfluidic cube. Microsyst. Nanoeng. 2020, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Rhee, M.; Burns, M.A. Microfluidic assembly blocks. Lab Chip 2008, 8, 1365–1373. [Google Scholar] [CrossRef]
- Langelier, S.M.; Livak-Dahl, E.; Manzo, A.J.; Johnson, B.N.; Walter, N.G.; Burns, M.A. Flexible casting of modular self-aligning microfluidic assembly blocks. Lab Chip 2011, 11, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.G.; Park, K.J.; Seok, S.; Shin, S.; Kim, D.H.; Park, J.Y.; Heo, Y.S.; Lee, S.J.; Lee, T.J. 3D printed modules for integrated microfluidic devices. RSC Adv. 2014, 4, 32876–32880. [Google Scholar] [CrossRef]
- Ji, Q.; Zhang, J.M.; Liu, Y.; Li, X.; Lv, P.; Jin, D.; Duan, H. A Modular Microfluidic Device via Multimaterial 3D Printing for Emulsion Generation. Sci. Rep. 2018, 8, 4791. [Google Scholar] [CrossRef]
- Song, R.; Abbasi, M.S.; Lee, J. Fabrication of 3D printed modular microfluidic system for generating and manipulating complex emulsion droplets. Microfluid. Nanofluid. 2019, 23, 92. [Google Scholar] [CrossRef]
- Zhou, Z.; Kong, T.; Mkaouar, H.; Salama, K.N.; Zhang, J.M. A hybrid modular microfluidic device for emulsion generation. Sens. Actuators A Phys. 2018, 280, 422–428. [Google Scholar] [CrossRef]
- Morimoto, Y.; Kiyosawa, M.; Takeuchi, S. Three-dimensional printed microfluidic modules for design changeable coaxial microfluidic devices. Sens. Actuators B Chem. 2018, 274, 491–500. [Google Scholar] [CrossRef]
- Munshi, A.S.; Chen, C.; Townsend, A.D.; Martin, R.S. Use of 3D printing and modular microfluidics to integrate cell culture, injections and electrochemical analysis. Anal. Methods 2018, 10, 3364–3374. [Google Scholar] [CrossRef]
- Zhang, J.M.; Aguirre-Pablo, A.A.; Li, E.Q.; Buttner, U.; Thoroddsen, S.T. Droplet generation in cross-flow for cost-effective 3D-printed “plug-and-play” microfluidic devices. RSC Adv. 2016, 6, 81120–81129. [Google Scholar] [CrossRef]
- Maillard, D.; De Pastina, A.; Larsen, T.; Villanueva, L.G. Modular interface and experimental setup for in-vacuum operation of microfluidic devices. Rev. Sci. Instrum. 2019, 90, 045006. [Google Scholar] [CrossRef] [PubMed]
- Mehta, V.; Rath, S.N. 3D printed microfluidic devices: A review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Bio-Des. Manuf. 2021, 4, 311–343. [Google Scholar] [CrossRef]
- Au, A.K.; Huynh, W.; Horowitz, L.F.; Folch, A. 3D-Printed Microfluidics. Angew. Chem. Int. Ed. Engl. 2016, 55, 3862–3881. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A. The upcoming 3D-printing revolution in microfluidics. Lab Chip 2016, 16, 1720–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sochol, R.D.; Sweet, E.; Glick, C.C.; Wu, S.-Y.; Yang, C.; Restaino, M.; Lin, L. 3D printed microfluidics and microelectronics. Microelectron. Eng. 2018, 189, 52–68. [Google Scholar] [CrossRef]
- Nie, J.; Gao, Q.; Qiu, J.-J.; Sun, M.; Liu, A.; Shao, L.; Fu, J.-Z.; Zhao, P.; He, Y. 3D printed Lego -like modular microfluidic devices based on capillary driving. Biofabrication 2018, 10, 035001. [Google Scholar] [CrossRef] [PubMed]
- Stoller, M.A.; Konda, A.; Kottwitz, M.A.; Morin, S.A. Thermoplastic building blocks for the fabrication of microfluidic masters. RSC Adv. 2015, 5, 97934–97943. [Google Scholar] [CrossRef]
- Waheed, S.; Cabot, J.M.; Macdonald, N.P.; Lewis, T.; Guijt, R.M.; Paull, B.; Breadmore, M.C. 3D printed microfluidic devices: Enablers and barriers. Lab Chip 2016, 16, 1993–2013. [Google Scholar] [CrossRef] [Green Version]
- Gyimah, N.; Scheler, O.; Rang, T.; Pardy, T. Can 3D Printing Bring Droplet Microfluidics to Every Lab?—A Systematic Review. Micromachines 2021, 12, 339. [Google Scholar] [CrossRef]
- Gong, H.; Bickham, B.P.; Woolley, A.T.; Nordin, G.P. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab Chip 2017, 17, 2899–2909. [Google Scholar] [CrossRef]
- He, Y.; Wu, Y.; Fu, J.Z.; Gao, Q.; Qiu, J.J. Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology: A Review. Electroanal 2016, 28, 1658–1678. [Google Scholar] [CrossRef]
- Pilipović, A.; Raos, P.; Šercer, M. Experimental analysis of properties of materials for rapid prototyping. Int. J. Adv. Manuf. Tech. 2007, 40, 105–115. [Google Scholar] [CrossRef]
- Walczak, R.; Adamski, K.; Kubicki, W. Inkjet 3D printed modular microfluidic chips for on-chip gel electrophoresis. J. Micromech. Microeng. 2019, 29, 057001. [Google Scholar] [CrossRef]
- Guckenberger, D.J.; de Groot, T.E.; Wan, A.M.D.; Beebe, D.J.; Young, E.W.K. Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 2015, 15, 2364–2378. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Berthier, E.; Craig, A.; de Groot, T.E.; Sparks, S.; Ingram, P.N.; Jarrard, D.F.; Huang, W.; Beebe, D.J.; Theberge, A.B. Reconfigurable open microfluidics for studying the spatiotemporal dynamics of paracrine signalling. Nat. Biomed. Eng. 2019, 3, 830–841. [Google Scholar] [CrossRef]
- Marquez, A.; Aymerich, J.; Dei, M.; Rodriguez-Rodriguez, R.; Vazquez-Carrera, M.; Pizarro-Delgado, J.; Gimenez-Gomez, P.; Merlos, A.; Teres, L.; Serra-Graells, F.; et al. Reconfigurable multiplexed point of Care System for monitoring type 1 diabetes patients. Biosens. Bioelectron. 2019, 136, 38–46. [Google Scholar] [CrossRef]
- Gerber, L.C.; Kim, H.; Riedel-Kruse, I.H. Microfluidic assembly kit based on laser-cut building blocks for education and fast prototyping. Biomicrofluidics 2015, 9, 064105. [Google Scholar] [CrossRef] [Green Version]
- Megarity, D.; Vroman, R.; Kriek, M.; Downey, P.; Bushell, T.J.; Zagnoni, M. A modular microfluidic platform to enable complex and customisable in vitro models for neuroscience. Lab Chip 2022, 22, 1989–2000. [Google Scholar] [CrossRef]
- Millet, L.J.; Lucheon, J.D.; Standaert, R.F.; Retterer, S.T.; Doktycz, M.J. Modular microfluidics for point-of-care protein purifications. Lab Chip 2015, 15, 1799–1811. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Xu, J.; Ma, B. One-step liquid molding based modular microfluidic circuits. Analyst 2020, 145, 6813–6820. [Google Scholar] [CrossRef]
- Hsieh, Y.F.; Yang, A.S.; Chen, J.W.; Liao, S.K.; Su, T.W.; Yeh, S.H.; Chen, P.J.; Chen, P.H. A Lego((R))-like swappable fluidic module for bio-chem applications. Sens. Actuators B Chem. 2014, 204, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Becker, H.; Gartner, C. Polymer microfabrication technologies for microfluidic systems. Anal. Bioanal. Chem. 2008, 390, 89–111. [Google Scholar] [CrossRef] [PubMed]
- Hlawatsch, N.; Klemm, R.; Carstens, C.; Brandstetter, T.; Becker, H.; Elbracht, R.; Gartner, C. A Lab-on-a-Chip System for the Development of Complex Assays Using Modular Microfluidic Components. In Proceedings of the Microfluidics, BioMEMS, and Medical Microsystems X, San Francisco, CA, USA, 23–24 January 2012; SPIE: San Francisco, CA, USA, 2012. [Google Scholar]
- Byoung Hee, Y.; Pin-Chuan, C.; Park, D.S.; Sunggook, P.; Nikitopoulos, D.E.; Soper, S.A.; Murphy, M.C. Passive micro-assembly of modular, hot embossed, polymer microfluidic devices using exact constraint design. J. Micromech. Microeng. 2009, 19, 125011. [Google Scholar]
- Tsao, C.-W.; DeVoe, D.L. Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluid. 2008, 6, 1–16. [Google Scholar] [CrossRef]
- Tsao, C.W. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production. Micromachines 2016, 7, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, N.P.; Cabot, J.M.; Smejkal, P.; Guijt, R.M.; Paull, B.; Breadmore, M.C. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms. Anal. Chem. 2017, 89, 3858–3866. [Google Scholar] [CrossRef] [PubMed]
- Godino, N.; Snakenborg, D.; Kutter, J.P.; Emneus, J.; Hansen, M.F.; Munoz, F.X.; Javier Del Campo, F. Construction and characterisation of a modular microfluidic system: Coupling magnetic capture and electrochemical detection. Microfluid. Nanofluid. 2010, 8, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Liou, D.-S.; Hsieh, Y.-F.; Kuo, L.-S.; Yang, C.-T.; Chen, P.-H. Modular component design for portable microfluidic devices. Microfluid. Nanofluid. 2011, 10, 465–474. [Google Scholar] [CrossRef]
- Hao, Y.; Bao, Y.; Huang, X.; Hu, Y.; Xiong, B. On-line pre-treatment, separation, and nanoelectrospray mass spectrometric determinations for pesticide metabolites and peptides based on a modular microfluidic platform. RSC Adv. 2018, 8, 39811–39817. [Google Scholar] [CrossRef] [Green Version]
- Ozkayar, G.; Lotters, J.C.; Tichem, M.; Ghatkesar, M.K. Toward a modular, integrated, miniaturized, and portable microfluidic flow control architecture for organs-on-chips applications. Biomicrofluidics 2022, 16, 021302. [Google Scholar] [CrossRef]
- Wei, L.; Greener, J.; Voicu, D.; Kumacheva, E. Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles. Lab Chip 2009, 9, 2715–2721. [Google Scholar]
- Huang, Y.; Han, T.; Xuan, J.; Xu, H.; Wang, Y.; Zhang, L. Design criteria and applications of multi-channel parallel microfluidic module. J. Micromech. Microeng. 2018, 28, 105021. [Google Scholar] [CrossRef] [Green Version]
- Yue, T.; Zhao, D.; Phan, D.T.T.; Wang, X.; Park, J.J.; Biviji, Z.; Hughes, C.C.W.; Lee, A.P. A modular microfluidic system based on a multilayered configuration to generate large-scale perfusable microvascular networks. Microsyst. Nanoeng. 2021, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.G.; Huang, T.; Chung, J.H.; Chen, C. 3D-Printed, Modular, and Parallelized Microfluidic System with Customizable Scaffold Integration to Investigate the Roles of Basement Membrane Topography on Endothelial Cells. ACS Biomater. Sci. Eng. 2021, 7, 1600–1607. [Google Scholar] [CrossRef]
- Angeletti, M.; Renaud, P.; Gargiulo, C. First steps towards interlocking modular microfluidic cooling substrates (i-MCS) for future silicon tracking detectors in High Energy Physics (HEP). Microelectron. Eng. 2022, 255, 111707. [Google Scholar] [CrossRef]
- Frische, N.; Datta, P.; Goettert, J. Development of a Biological Detection Platform Utilizing a Modular Microfluidic Stack; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1553–1561. [Google Scholar]
- Zhang, J.M.; Ji, Q.; Duan, H. Three-Dimensional Printed Devices in Droplet Microfluidics. Micromachines 2019, 10, 754. [Google Scholar] [CrossRef] [Green Version]
- Maeots, M.E.; Lee, B.; Nans, A.; Jeong, S.G.; Esfahani, M.M.N.; Ding, S.; Smith, D.J.; Lee, C.S.; Lee, S.S.; Peter, M.; et al. Modular microfluidics enables kinetic insight from time-resolved cryo-EM. Nat. Commun. 2020, 11, 3465. [Google Scholar] [CrossRef]
- Abdel-Latif, K.; Epps, R.W.; Kerr, C.B.; Papa, C.M.; Castellano, F.N.; Abolhasani, M. Facile Room-Temperature Anion Exchange Reactions of Inorganic Perovskite Quantum Dots Enabled by a Modular Microfluidic Platform. Adv. Funct. Mater. 2019, 29, 1900712. [Google Scholar] [CrossRef]
- Williams, M.J.; Lee, N.K.; Mylott, J.A.; Mazzola, N.; Ahmed, A.; Abhyankar, V.V. A low-cost, Rapidly Integrated Debubbler (RID) module for microfluidic cell culture applications. Micromachines 2019, 10, 360. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Sun, N.; Luo, Y.; Lai, X.; Li, P.; Zhang, Z. Emergence of debubblers in microfluidics: A critical review. Biomicrofluidics 2022, 16, 031503. [Google Scholar] [CrossRef]
- Guo, W.; Tang, L.; Zhou, B.; Fung, Y. Fundamental studies of rapidly fabricated on-chip passive micromixer for modular microfluidics. Micromachines 2021, 12, 153. [Google Scholar] [CrossRef] [PubMed]
- Jasiska, L.; Malecha, K. Microfluidic modules integrated with microwave components—Overview of applications from the perspective of different manufacturing technologies. Sensors 2021, 21, 1710. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, K.C.; Thompson, B.; Tembhekar, A.; Malmstadt, N. Temperature sensing in modular microfluidic architectures. Micromachines 2016, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Suarez, S.A.; Thurgood, P.; Nguyen, N.; Mohammed, M.; Abdelwahab, H.; Needham, S.; Pirogova, E.; Ghorbani, K.; Baratchi, S.; et al. Reconfigurable, Self-Sufficient Convective Heat Exchanger for Temperature Control of Microfluidic Systems. Anal. Chem. 2019, 91, 15784–15790. [Google Scholar] [CrossRef] [PubMed]
- Rauti, R.; Ess, A.; Roi, B.L.; Kreinin, Y.; Epshtein, M.; Korin, N.; Maoz, B.M. Transforming a well into a chip: A modular 3D-printed microfluidic chip. APL Bioeng. 2021, 5, 026103. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.; Bhargava, K.C.; Czaja, A.T.; Pan, B.; Samuelsen, B.T.; Malmstadt, N. Spectrophotometry in modular microfluidic architectures. Biomicrofluidics 2019, 13, 064121. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, X.; Yao, Y.; Jing, W.; Liu, S.; Sui, G. A novel microfluidic module for rapid detection of airborne and waterborne pathogens. Sens. Actuators B Chem. 2018, 258, 1138–1145. [Google Scholar] [CrossRef]
- Chiadò, A.; Palmara, G.; Chiappone, A.; Tanzanu, C.; Pirri, C.F.; Roppolo, I.; Frascella, F. A modular 3D printed lab-on-a-chip for early cancer detection. Lab Chip 2020, 20, 665–674. [Google Scholar] [CrossRef]
- Lai, X.; Guo, Q.; Shi, Z.; Chen, H.; Li, D. Rubik’s Cube-Like Multifunctional Sensing Platform. In Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Online, 25–29 January 2021; pp. 1012–1014. [Google Scholar]
- Gilde, M.J.; Van Den Vlekkert, H.; Leeuwis, H.; Prak, A. Modular design approach for microfluidic systems. In Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show—NSTI Nanotech 2005, Anaheim, CA, USA, 8–12 May 2005; Nano Science and Technology Institute: Anaheim, CA, USA, 2005; pp. 684–687. [Google Scholar]
- Sabourin, D.; Snakenborg, D.; Skafte-Pedersen, P.; Kutter, J.P.; Dufva, M. Modular microfluidic system with a cast PDMS pumping bed and planar PDMS interconnection blocks. In Proceedings of the 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2008, San Diego, CA, USA, 12–16 October 2008; Chemical and Biological Microsystems Society: San Diego, CA, USA, 2008; pp. 712–714. [Google Scholar]
- Dekker, S.; Buesink, W.; Blom, M.; Alessio, M.; Verplanck, N.; Hihoud, M.; Dehan, C.; Cesar, W.; Le Nel, A.; van den Berg, A.; et al. Standardized and modular microfluidic platform for fast Lab on Chip system development. Sens. Actuators B Chem. 2018, 272, 468–478. [Google Scholar] [CrossRef] [Green Version]
- Vollertsen, A.R.; de Boer, D.; Dekker, S.; Wesselink, B.A.M.; Haverkate, R.; Rho, H.S.; Boom, R.J.; Skolimowski, M.; Blom, M.; Passier, R.; et al. Modular operation of microfluidic chips for highly parallelized cell culture and liquid dosing via a fluidic circuit board. Microsyst. Nanoeng. 2020, 6, 107. [Google Scholar] [CrossRef]
- Gimenez-Gomez, P.; Baldi, A.; Ayora, C.; Fernandez-Sanchez, C. Automated Determination of As(III) in Waters with an Electrochemical Sensor Integrated into a Modular Microfluidic System. ACS Sens. 2019, 4, 3156–3165. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, B.; Oh, I.; Choi, S. Optofluidic Modular Blocks for On-Demand and Open-Source Prototyping of Microfluidic Systems. Small 2018, 14, e1802769. [Google Scholar] [CrossRef] [PubMed]
- Gökaltun, A.; Kang, Y.B.; Yarmush, M.L.; Usta, O.B.; Asatekin, A. Simple Surface Modification of Poly(dimethylsiloxane) via Surface Segregating Smart Polymers for Biomicrofluidics. Sci. Rep. 2019, 9, 7377. [Google Scholar] [CrossRef] [Green Version]
- Murase, R.; Kondo, S.; Kitamura, T.; Goi, Y.; Hashimoto, M.; Teramoto, Y. Cellulose nanofibers as a module for paper-based microfluidic analytical devices: Labile substance storage, processability, and reaction field provision and control. ACS Appl. Bio. Mater. 2018, 1, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Andersen, N.I.; Artyushkova, K.; Matanovi, I.; Seow Chavez, M.; Hickey, D.P.; Abdelloui, S.; Minteer, S.D.; Atanassov, P. Modular Microfluidic Paper-Based Devices for Multi-Modal Cascade Catalysis. ChemElectroChem 2019, 6, 2448–2455. [Google Scholar] [CrossRef]
- Kanitthamniyom, P.; Zhou, A.; Feng, S.; Liu, A.; Vasoo, S.; Zhang, Y. A 3D-printed modular magnetic digital microfluidic architecture for on-demand bioanalysis. Microsyst. Nanoeng. 2020, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Lu, B.; Zhang, P.; Zhang, X.; Pu, Z.; Yu, H.; Li, D. Sticker Microfluidics: A Method for Fabrication of Customized Monolithic Microfluidics. ACS Biomater. Sci. Eng. 2019, 5, 6801–6810. [Google Scholar] [CrossRef] [PubMed]
- Palleau, E.; Reece, S.; Desai, S.C.; Smith, M.E.; Dickey, M.D. Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv. Mater. 2013, 25, 1589–1592. [Google Scholar] [CrossRef]
- Valentin, T.M.; Dubois, E.M.; Machnicki, C.E.; Bhaskar, D.; Cui, F.R.; Wong, I.Y. 3D printed self-adhesive PEGDA-PAA hydrogels as modular components for soft actuators and microfluidics. Polym. Chem. 2019, 10, 2015–2028. [Google Scholar] [CrossRef]
- Brown, C.R.; Farshchian, B.; Chen, P.-C.; Park, T.; Park, S.; Murphy, M.C. Novel, gasketless, interconnect using parallel superhydrophobic surfaces for modular microfluidic systems. In Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, Denver, CO, USA, 11–17 November 2011; American Society of Mechanical Engineers (ASME): Denver, CO, USA, 2011; pp. 633–637. [Google Scholar]
- Van Heeren, H. Standards for connecting microfluidic devices? Lab Chip 2012, 12, 1022–1025. [Google Scholar] [CrossRef]
- Van Heeren, H.; Tantra, R.; Salomon, P. Microfluidic devices: A road forward by standardization of interconnects and classification. Microfluid. Nanofluid. 2015, 19, 1203–1207. [Google Scholar] [CrossRef]
- Reyes, D.R.; van Heeren, H.; Guha, S.; Herbertson, L.; Tzannis, A.P.; Ducree, J.; Bissig, H.; Becker, H. Accelerating innovation and commercialization through standardization of microfluidic-based medical devices. Lab Chip 2021, 21, 9–21. [Google Scholar] [CrossRef] [PubMed]
Manufacturing Methods | Feature (Void) Size [77] | Surface Roughness | Applicability in Modular Design | Advantages | Limitations | |
---|---|---|---|---|---|---|
Additive manufacturing | FDM | >300 μm | Coarse | High (arbitrary external shape for interconnections) |
|
|
SL | Usually >150 μm | Medium (fine on forming plane) |
|
| ||
PolyJet | >200 μm | Fine |
|
| ||
Subtractive manufacturing | Micro-milling | >50 μm (dependent on endmill size) | Fine | Medium (allows 3D external shape) |
|
|
Laser ablation | >50 μm | Coarse on edges | Low (inapplicable for complex external shape) |
|
| |
Subtractive mold-based manufacturing | >5 μm (dependent on template) | Fine |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, X.; Yang, M.; Wu, H.; Li, D. Modular Microfluidics: Current Status and Future Prospects. Micromachines 2022, 13, 1363. https://doi.org/10.3390/mi13081363
Lai X, Yang M, Wu H, Li D. Modular Microfluidics: Current Status and Future Prospects. Micromachines. 2022; 13(8):1363. https://doi.org/10.3390/mi13081363
Chicago/Turabian StyleLai, Xiaochen, Mingpeng Yang, Hao Wu, and Dachao Li. 2022. "Modular Microfluidics: Current Status and Future Prospects" Micromachines 13, no. 8: 1363. https://doi.org/10.3390/mi13081363
APA StyleLai, X., Yang, M., Wu, H., & Li, D. (2022). Modular Microfluidics: Current Status and Future Prospects. Micromachines, 13(8), 1363. https://doi.org/10.3390/mi13081363