Research on Metal Corrosion Resistant Bioinspired Special Wetting Surface Based on Laser Texturing Technology: A Review
Abstract
:1. Introduction
2. Superhydrophobicity Mechanism
2.1. Contact Angle (CA) and Rolling Angle (RA) Theory
2.2. Theoretical Model of Hydrophobicity
2.3. Formation of Superhydrophobic Surface
2.4. Bionic Slippery Surface
3. Laser Fabricating Processing and Surface Structure Processing
3.1. Selection and Influence of Laser Types
3.2. Selection and Influence of Laser Parameters
3.2.1. Laser Physical Parameters
3.2.2. Laser Processing Parameters
3.3. Selection and Influence of Processing Medium
3.4. Selection and Influence of Processing Structure
4. Corrosion Resistance Function
4.1. Corrosion Resistance Mechanism
4.2. Corrosion Resistance Characterization Experiments
4.2.1. CA/RA Experiment
4.2.2. Scanning Electron Microscope Experiments (SEM)
4.2.3. X-ray Photoelectron Spectroscopy Experiment (XPS)
4.2.4. Energy Dispersion Spectrum Experiment (EDS)
4.2.5. Dynamic Potential Polarization Curve Experiment (PDP)
4.2.6. Electrochemical Impedance Spectroscopy Experiment (EIS)
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yang, Z.; Liu, X.P.; Tian, Y.L. Novel metal-organic super-hydrophobic surface fabricated by nanosecond laser irradiation in solution. Colloids Surf. A 2020, 587, 124343. [Google Scholar] [CrossRef]
- Huang, Y.; Sarkar, D.K.; Callant, D.; Chen, X.G. Corrosion resistance properties of superhydrophobic copper surfaces fabricated by one-step electrochemical modification process. Appl. Surf. Sci. 2013, 282, 689–694. [Google Scholar] [CrossRef]
- Cremaldi, J.; Bhushan, B. Self-cleaning superliquiphilic/phobic stainless steel using different pathways. J. Collioid Interface Sci. 2018, 518, 284–297. [Google Scholar] [CrossRef] [PubMed]
- Toosi, S.F.; Moradi, S.; Ebrahimi, M.; Hatzikiriakos, S.G. Microfabrication of polymeric surfaces with extreme wettability using hot embossing. Appl. Surf. Sci. 2016, 378, 426–434. [Google Scholar] [CrossRef]
- Kamal, S.A.A.; Ritikos, R.; Rahman, S.A. Wetting behavior of carbon nitride nanostructures grown by plasma enhanced chemical vapor deposition technique. Appl. Surf. Sci. 2015, 328, 146–153. [Google Scholar] [CrossRef]
- Lakshmi, R.V.; Basu, B.J. Fabrication of superhydrophobic sol-gel composite films using hydrophobically modified colloidal zinc hydroxide. J. Colloid Interface Sci. 2009, 339, 454–460. [Google Scholar] [CrossRef]
- Ou, J.F.; Hu, W.H.; Xue, M.S.; Wang, F.J.; Li, W. Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection. ACS Appl. Mater. Interface 2013, 5, 3101–3107. [Google Scholar] [CrossRef] [PubMed]
- Koivuluoto, H.; Nakki, J.; Vuoristo, P. Corrosion properties of cold-sprayed tantalum coatings. J. Therm. Spray Techn. 2009, 18, 75–82. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.P.; Tian, Y.L. A contrastive investigation on anticorrosive performance of laser-induced super-hydrophobic and oil-infused slippery coatings. Prog. Org. Coat. 2020, 138, 105313. [Google Scholar] [CrossRef]
- Ensikat, H.J.; Ditsche-Kuru, P.; Neinhuis, C.; Barthlott, W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Brilstein J. Nanotechnol. 2011, 2, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.F.; Jiang, L. Water-repellent legs of water striders. Nature 2004, 432, 36. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Yong, J.L.; Huo, J.L.; Yang, Q.; Cheng, Y.; Liang, J.; Chen, F. Bioinspired slippery surface fabricated by femtosecond Laser and its applications. Laser Optoelectron. Prog. 2020, 57, 111413. [Google Scholar] [CrossRef]
- Gao, H.P.; Liu, V.; Wang, G.Y.; Li, S.Y.; Han, Z.W.; Ren, L.Q. Biomimetic metal surfaces inspired by lotus and reed leaves for manipulation of microdroplets or fluids. Appl. Surf. Sci. 2020, 519, 146052. [Google Scholar] [CrossRef]
- Mohamed, A.M.A.; Abdullah, A.M.; Younan, N.A. Corrosion behavior of superhydrophobic surfaces: A review. Arab. J. Chem. 2015, 8, 749–765. [Google Scholar] [CrossRef]
- Sarkar, A.; Kietzig, A.M. Design of a robust superhydrophobic surface: Thermodynamic and kinetic analysis. Soft Matter 2015, 11, 3733. [Google Scholar] [CrossRef]
- Li, D.Q. Drop size dependence of contact angles and line tensions of solid-liquid systems. Colloids Surf. A 1996, 116, 1–23. [Google Scholar] [CrossRef]
- Young, T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. Res. 1936, 28, 988. [Google Scholar] [CrossRef]
- Johnson, R.E.; Dettre, R.H. Contact angle, Wettability and Adhesion. Adv. Chem. Ser. 1964, 43, 112. [Google Scholar]
- Netz, R.R.; Andelman, D. Roughness-induced wetting. Phys. Rev. E 1997, 55, 687–700. [Google Scholar] [CrossRef]
- Wenzel, R.N. Surface roughness and contact angle. J. Phys. Colloid Chem. 1949, 53, 1466. [Google Scholar] [CrossRef]
- Bian, Y.C.; Wang, Y.L.; Xiao, Y.; Zhang, Y.H.; Jiao, Y.L.; Wu, D.; Zhou, C.G.; Yao, C.L. Controllable Micro/Nano Structure Surface Fabricated by Femtosecond Laser and its Applications. Laser Optoelectron. Prog. 2020, 57, 111406. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.P.; Tian, Y.L. Fabrication of super-hydrophobic nickel film on copper substrate with improved corrosion inhibition by electrodeposition process. Colloids. Surf. A 2018, 560, 205–212. [Google Scholar] [CrossRef]
- Patankar, N.A. On the modeling of hydrophobic contact angles on rough surfaces. Langmuirs 2003, 19, 1249–1253. [Google Scholar] [CrossRef]
- Bhushan, B.; Jung, Y.C. Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nano patterned surfaces. J. Phys. Condens. Matter 2008, 20, 225010. [Google Scholar] [CrossRef]
- Herminghaus, S. Roughness-induced non-wetting. Europhys. Lett. 2000, 52, 165–170. [Google Scholar] [CrossRef]
- Bico, J.; Tordeux, C.; Quere, D. Rough wetting. Europhys. Lett. 2001, 55, 214–220. [Google Scholar] [CrossRef]
- Long, J.Y.; Zhong, M.L.; Fan, P.X.; Gong, D.W.; Zhang, H.J. Wettability conversion of ultrafast laser structured copper surface. J. Laser Appl. 2015, 27, 29107. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.P.; Tian, Y.L. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure. J. Colloid Interface Sci. 2018, 533, 268–277. [Google Scholar] [CrossRef]
- Kietzig, A.M.; Hatzikiriakos, S.G.; Englezos, P. Patterned superhydrophobic metallic surfaces. Langmuir 2009, 25, 4821–4827. [Google Scholar] [CrossRef] [PubMed]
- Ta, D.V.; Dunn, A.; Wasley, T.J.; Kay, R.W.; Stringer, J.; Smith, P.J.; Connaughton, C.; Shephard, J.D. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications. Appl. Surf. Sci. 2015, 357, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.N.; Zeng, Q.F.; Fu, T. An updated review on TiNi alloy for biomedical applications. Corros. Rev. 2019, 37, 539–552. [Google Scholar] [CrossRef]
- Lakovlev, A.; Ruzankina, J.; Kasheev, S.; Vasilyev, O.; Parfenov, V.; Grishkanich, A. Laser corrosion resistance treatment of metal surfaces. High-Power Laser Mater. Process. Appl. Diagn. Syst. 2017, 5, 10097. [Google Scholar]
- Zhu, J.Y.; Wu, J.M. One-step fabrication of an corrosion resistance superhydrophobic surface on stainless steel. Mater. Res. Express. 2020, 7, 076404. [Google Scholar] [CrossRef]
- Jagdheesh, R.; Garcia-Ballesteros, J.J.; Ocana, J.L. One-step fabrication of near superhydrophobic aluminum surface by nanosecond laser ablation. Appl. Surf. Sci. 2016, 374, 2–11. [Google Scholar]
- Wang, Y.H.; Zhang, Z.B.; Xu, J.K.; Yu, H.D. One-step method using laser for large-scale preparation of bionic superhydrophobic & drag-reducing fish-scale surface. Surf. Coat. Technol. 2021, 409, 126801. [Google Scholar]
- Boinovich, L.B.; Emelyanenko, A.M.; Emelyanenko, K.A.; Domantovsky, A.G.; Shiryaev, A.A. Comment on “Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications”. Appl. Surf. Sci. 2016, 379, 111–113. [Google Scholar] [CrossRef]
- Dabek-Zlotorzynska, E.; Celo, V. Measurement of low-molecular-weight carboxylic acids in ambient air and vehicle emission by capillary electrophoresis. Methods Mol. Biol. 2008, 384, 43–64. [Google Scholar]
- Yang, Z.; Tian, Y.L.; Zhao, Y.C.; Yang, C.J. Study on the fabrication of super-hydrophobic surface on inconel alloy via nanosecond laser ablation. Materials 2019, 12, 278. [Google Scholar] [CrossRef]
- Pu, Z.H.; Zhang, D.W.; Jing, X.B.; Yang, Z.; Yang, C.J.; Ehmann, K.F. Fabrication of super-hydrophobic and highly oleophobic Ti-6Al-4V surfaces by a hybrid method. Mater. Res. Bull. 2020, 130, 110915. [Google Scholar] [CrossRef]
- Saleema, N.; Sarkar, D.K.; Paynter, R.W.; Chen, X.G. Superhydrophobic aluminum alloy surfaces by a novel one-step process. ACS Appl. Mater. Interface 2010, 2, 2500–2502. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, X.P.; Tian, Y.L. Hybrid laser Ablation and Chemical Modification for Fast Fabrication of Bio-inspired Super-hydrophobic Surface with Excellent Self-cleaning, Stability and Corrosion Resistance. J. Bionic Eng. 2019, 16, 13–26. [Google Scholar] [CrossRef]
- Chen, T.C.; Liu, H.T.; Yang, H.F.; Yan, W.; Zhu, W.; Liu, H. Biomimetic fabrication of robust self-assembly superhydrophobic surfaces with corrosion resistance properties on stainless steel substrate. RSC Adv. 2016, 6, 43937–43949. [Google Scholar] [CrossRef]
- Chen, T.C.; Ge, S.R.; Liu, H.T. Laser-induced superhydrophobic Ti-Ni shape memory alloy with corrosion resistance and self-cleaning properties. J. Laser Micro. Nanoen. 2017, 12, 212–216. [Google Scholar]
- Liu, T.; Chen, S.G.; Cheng, S.; Tian, J.T.; Chang, X.T.; Yin, Y.S. Corrosion behavior of super-hydrophobic surface on copper in seawater. Electrochimi. Acta 2007, 52, 8003–8007. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Tang, J.R.; Hao, B.; Wang, M.Y. Investigation of Anticorrosive Performance of oil-infused Slippery and Superhydrophobic Brass Surfaces by Laser Texturing. J. Bionic Eng. 2021, 18, 1157–1167. [Google Scholar] [CrossRef]
- Emelyanenko, K.A.; Domantovsky, A.G.; Chulkova, E.V.; Emelyanenko, A.M.; Boinovich, L.B. Thermally Induced Gradient of Properties on a Superhydrophobic Magnesium Alloy Surface. Metals 2021, 11, 41. [Google Scholar] [CrossRef]
- Li, X.Y.; Jiang, Y.; Jiang, Z.H.; Li, Y.C.; Wen, C.; Lian, J.S. Reversible wettability transition between superhydrophilicity and superhydrophobicity through alternate heating-reheating cycle on laser-ablated brass surface. Appl. Surf. Sci. 2019, 492, 349–361. [Google Scholar] [CrossRef]
- Wong, T.S.; Kang, S.H.; Tang, S.K.Y.; Smythe, E.J.; Hatton, B.D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447. [Google Scholar] [CrossRef]
- Li, J.S.; Ueda, E.; Paulssen, D.; Levkin, P.A. Slippery lubricant-Infused surfaces: Properties and emerging applications. Adv. Funct. Mater. 2019, 29, 1802317. [Google Scholar] [CrossRef]
- Yong, J.L.; Huo, J.L.; Yang, Q.; Chen, F.; Fang, Y.; Wu, X.J.; Liu, L.; Lu, X.Y.; Zhang, J.Z.; Hou, X. Femtosecond laser direct writing of porous network microstructures for fabricating super-slippery surfaces with excellent liquid repellence and anti-cell proliferation. Adv. Mater. Interfaces 2018, 5, 1701479. [Google Scholar] [CrossRef]
- Manabe, K.; Matsubayashi, T.; Tenjimbayashi, M.; Moriya, T.; Tsuge, Y.; Kyung, K.H.; Shiratori, S. Controllable Broadband optical Transparency and Wettability Switching of Temperature Activated Solid/Liquid-infused Nanofibrous Membranes. ACS Nano 2016, 10, 9387–9396. [Google Scholar] [CrossRef]
- Tian, D.L.; Zhang, N.; Zheng, X.; Hou, G.L.; Tian, Y.; Du, Y.; Jiang, L.; Dou, S.X. Fast responsive and controllable liquid transport on a magnetic fluid/nanoarray Composite Interface. ACS Nano 2016, 10, 6220–6226. [Google Scholar] [CrossRef] [PubMed]
- Khalil, K.S.; Mahmoudi, S.R.; Abu-dheir, N.; Varanasi, K.K. Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets. Appl. Phys. Lett. 2014, 105, 041604. [Google Scholar] [CrossRef]
- Wang, Z.B.; Heng, L.P.; Jiang, L. Effect of lubricant viscosity on the self-healing properties and electrically driven sliding of droplets on anisotropic slippery surfaces. J. Mater. Chem. A 2018, 6, 3414–3421. [Google Scholar] [CrossRef]
- Wooh, S.; Butt, H.J. A Photocatalytically active Lubricant-impregnated surface. Angew. Chem. Int. Ed. 2017, 56, 4965–4969. [Google Scholar] [CrossRef]
- Gao, C.L.; Wang, L.; Lin, Y.C.; Li, J.T.; Liu, Y.F.; Li, X.; Feng, S.L.; Zheng, Y.M. Droplets manipulated on photothermal organogel Surfaces. Adv. Funct. Mater. 2018, 28, 1803072. [Google Scholar] [CrossRef]
- Wang, Z.B.; Liu, Y.; Guo, P.; Heng, L.P.; Jiang, L. Photoelectric synergetic responsive slippery surfaces based on tailored anisotropic films generated by interfacial directional freezing. Adv. Funct. Mater. 2018, 28, 1801310. [Google Scholar] [CrossRef]
- Preston, D.J.; Song, Y.; Lu, Z.M.; Antao, D.S.; Wang, E.N. Design of Lubricant Infused Surfaces. ACS Appl. Mater. Interface 2017, 9, 42383–42392. [Google Scholar] [CrossRef]
- Schellenberger, F.; Xie, J.; Encinas, N.; Hardy, A.; Klapper, M.; Papadopoulos, P.; Butt, H.J.; Vollmer, D. Direct observation of drops on slippery lubricant-infused surfaces. Soft Matter 2015, 11, 7617–7626. [Google Scholar] [CrossRef] [PubMed]
- Sett, S.; Yan, X.; Barac, G.; Bolton, L.W.; Miljkovic, N. Lubricant-infused surfaces for low-surface-tension fluids: Promise versus reality. ACS Appl. Mater. Interface 2017, 9, 36400–36408. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.J.; Cao, W.R.; Yang, Z.; Wang, M.; Jing, X.B.; Tian, Y.L. The Study on the Corrosion resistance Performance of NiTi Alloy in Human Body Solution with the Fabricating Processes of Laser Irradiation and PDMS Modification. J. Bionic Eng. 2021, 18, 77–91. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, Y.L.; Yang, C.; Wang, F.J.; Liu, X.P. Modification of wetting property of Inconel 718 surface by nanosecond laser texturing. Appl. Surf. Sci. 2017, 414, 313–324. [Google Scholar] [CrossRef]
- Mannion, P.T.; Magee, J.; Coyne, E.; O’Connor, G.M.; Glynn, T.J. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl. Surf. Sci. 2004, 233, 275–287. [Google Scholar] [CrossRef]
- Zheng, B.Y.; Di, Y.L.; Wang, H.D.; Kang, J.J.; Liu, T. Research progress in preparation of super-hydrophobic surface of metal matrix by laser processing. Mater. Rep. 2020, 34, 23109–23120. [Google Scholar]
- Yuan, D.Q.; Zhou, M.; Cai, L. Micromachining of Au film by femtosecond pulse laser. Spectrosc. Spectr. Anal. 2009, 6, 1454. [Google Scholar]
- Zhou, S.Q.; Ma, G.J.; Wang, C.H.; Zhang, W. Rule of morphology variation of Ti alloy surface induced by femtosecond lasers. Chin. J. Lasers 2016, 43, 0902003. [Google Scholar] [CrossRef]
- Yang, C.J.; Jing, X.B.; Wang, F.J.; Ehmann, O.R.N.; Tian, Y.L.; Pu, Z.H. Fabrication of controllable wettability of crystalline silicon surfaces by laser surface texturing and silanization. Appl. Surf. Sci. 2019, 497, 143805. [Google Scholar] [CrossRef]
- Li, H.Y.; Tian, Y.L.; Yang, Z. Stability Mechanism of Laser-induced Fluorinated super-hydrophobic Coating in Alkaline Solution. J. Bionic Eng. 2021, 19, 113–125. [Google Scholar] [CrossRef]
- Li, X.Y.; Jiang, Y.; Jiang, Z.H.; Li, Y.C.; Wen, C.E.; Zhang, D.M.; Lian, J.S.; Zhang, Z.H. Improvement of corrosion resistance of H59 brass through fabricating superhydrophobic surface using laser ablation and heating treatment. Corros. Sci. 2021, 180, 109186. [Google Scholar] [CrossRef]
- Yang, C.J.; Wang, M.; Yang, Z.; Zhang, D.W.; Tian, Y.L.; Jing, X.B.; Liu, X.P. Investigation of effects of acid, alkali, and salt solutions on fluorinated superhydrophobic surfaces. Langmuir 2020, 35, 17027–17036. [Google Scholar] [CrossRef] [PubMed]
- Li, B.J.; Zhou, M.; Yuan, R.; Cai, L. Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability. J. Mater. Res. 2008, 23, 2491–2499. [Google Scholar] [CrossRef]
- Park, C.H.; Tijing, L.D.; Pant, H.R.; Kim, C.S. Effect of laser polishing on the surface roughness and corrosion resistance of Nitinol stents. Bio-Med. Mater. Eng. 2015, 25, 67–75. [Google Scholar] [CrossRef]
- Ma, Q.; Tong, Z.; Wang, W.; Dong, G.N. Fabricating robust and repairable superhydrophobic surface on carbon steel by nanosecond laser texturing for corrosion protection. Appl. Surf. Sci. 2018, 455, 748–757. [Google Scholar] [CrossRef]
- Lanara, C.; Mimidis, A.; Stratakis, E. Femtosecond laser fabrication of stable hydrophilic and anti-corrosive steel surfaces. Materials 2019, 12, 3428. [Google Scholar] [CrossRef] [PubMed]
- Ballerini, G.; Bardi, U.; Bignucolo, R.; Ceraolo, G. About some corrosion mechanisms of AZ91D magnesium alloy. Corros. Sci. 2005, 47, 2173–2184. [Google Scholar] [CrossRef]
- Sun, R.J.; Guan, Y.C.; Zhu, Y. Development of laser surface technologies for corrosion resistance magnesium alloys: A review. Surf. Rev. Lett. 2016, 23, 1630003. [Google Scholar] [CrossRef]
- Pou, P.; del Val, J.; Riveiro, A.; Comesana, R.; Arias-Gonzalez, F.; Lusquinos, F.; Bountinguiza, M.; Quintero, F.; Pou, J. Laser texturing of stainless steel under different processing atmospheres: From superhydrophilic to superhydrophobic surfaces. Appl. Surf. Sci. 2019, 475, 896–905. [Google Scholar] [CrossRef]
- Long, J.Y.; Zhong, M.L.; Zhang, H.J.; Fan, P.X. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air. J. Colloid Interface Sci. 2015, 441, 1–9. [Google Scholar] [CrossRef]
- Razi, S.; Madanipour, K.; Mollabashi, M. Laser surface texturing of 316L stainless steel in air and water: A method for increasing hydrophilicity via direct creation of microstructures. Opt. Laser Technol. 2016, 80, 237–246. [Google Scholar] [CrossRef]
- Lqbal, M.H.; Bashir, S. Laser induced surface and structural modification of germanium in liquid environments. J. Laser Appl. 2018, 30, 012005. [Google Scholar]
- Zhang, D.S.; Gokce, B.; Sommer, S.; Streubel, R.; Barcikowski, S. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol. Appl. Surf. Sci. 2016, 367, 222–230. [Google Scholar] [CrossRef]
- Stratakis, E.; Bonse, J.; Heitz, J.; Siegel, J.; Tsibidis, G.D.; Skoulas, E.; Papadopoulos, A.; Mimidis, A.; Joel, A.C.; Comanns, P.; et al. Laser engineering of biomimetic surfaces. Mater. Sci. Eng. R Rep. 2020, 141, 100562. [Google Scholar] [CrossRef]
- Li, X.G.; Zhang, D.W.; Liu, Z.Y.; Li, Z.; Du, C.W.; Dong, C.F. Materials science: Share corrosion data. Nature 2015, 527, 441–442. [Google Scholar] [CrossRef] [PubMed]
- Tomashov, N.D. Theory of Corrosion and Protection of Metals; Macmillan: New York, NY, USA, 1966. [Google Scholar]
- Marcus, P. Corrosion Mechanisms in Theory and Practice; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Song, G.L.; Atrens, A. Understanding magnesium corrosion –A framework for improved alloy performance. Adv. Eng. Mater. 2003, 5, 837–858. [Google Scholar] [CrossRef]
- Alwahib, A.A.; Muttlak, W.H.; Mahdi, B.S.; Mohammed, A.Z. Corrosion resistance enhancement by laser and reduced graphene oxide-based nano-silver for 1050 aluminum alloy. Surf. Interfaces 2020, 20, 100557. [Google Scholar] [CrossRef]
- Liu, T.; Yin, Y.S.; Chen, S.G.; Chang, X.T.; Cheng, S. Super-hydrophobic surfaces improve corrosion resistance of copper in seawater. Electrochimi. Acta 2007, 52, 3709–3713. [Google Scholar] [CrossRef]
- Yao, W.H.; Wu, L.; Huang, G.S.; Jiang, B.; Atrens, A.; Pan, F.S. Superhydrophobic coatings for corrosion protection of magnesium alloys. J. Mater. Sci. Technol. 2020, 52, 100–118. [Google Scholar] [CrossRef]
- Trdan, U.; Hocevar, M.; Gregorcic, P. Superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance. Corros. Sci. 2017, 123, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.L.; Gu, C.D.; Tong, Y.Y.; Yan, W.; Tu, J.P. A Smart Superhydrophobic coating on AZ31B magnesium alloy with self-Healing Effect. Adv. Mater. Interfaces 2016, 3, 15000694. [Google Scholar] [CrossRef]
- Alibakhshi, E.; Akbarian, M.; Ramezanzadeh, M.; Ramezanzadeh, B.; Mandavian, M. Evaluation of the corrosion protection performance of mild steel coated with hybrid sol-gel silane coating in 3.5 wt.% NaCl solution. Prog. Org. Coat. 2018, 123, 190–200. [Google Scholar] [CrossRef]
- Wang, Z.B.; Wang, Z.Y.; Hu, H.X.; Liu, C.B.; Zheng, Y.G. Corrosion protection performance of nano-SiO2/epoxy composite coatings in acidic desulfurized flue gas condensates. J. Mater. Eng. Perform. 2016, 25, 3880–3889. [Google Scholar] [CrossRef]
- Yu, D.Y.; Wang, J.F.; Tian, J.T.; Xu, X.M.; Dai, J.H.; Wang, X. Preparation and characterization of TiO2/ZnO composite coating on carbon steel surface and its anticorrosive behavior in seawater. Compos. Part B Eng. 2013, 46, 135–144. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, A.M.; Modestov, A.D.; Domantovsky, A.G.; Emelyanenko, K.A. Not simply repel water: The diversified nature of corrosion protection by superhydrophobic coatings. Mendeleev Commun. 2017, 27, 254–256. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, A.M.; Modestov, A.D.; Domantovsky, A.G.; Emelyanenko, K.A. Synergistic effect of superhydrophobicity and oxidized layers on corrosion resistance of aluminum alloy surface textured by nanosecond laser treatment. ACS Appl. Mater. Interface 2015, 7, 19500–19508. [Google Scholar] [CrossRef]
- Bram, M.; Ahmad-khanlou, A.; Buchkremer, H.P.; Stover, D. Vacuum plasma spraying of NiTi protection layers. Mater. Lett. 2002, 57, 647–651. [Google Scholar] [CrossRef]
- Shabalovskaya, S.; Rondelli, G.; Anderegg, J.; Xiong, J.P.; Wu, M. Comparative corrosion performance of black oxide, sandblasted, and fine-drawn NiTinol wires in potentiodynamic and potentiostatic tests: Effects of chemical etching and electropolishing. J. Biomed. Mater. Res. B 2004, 69B, 223–231. [Google Scholar] [CrossRef]
- Song, G.L.; Atrens, A. Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1999, 1, 11–33. [Google Scholar] [CrossRef]
- Zheng, B.X.; Jiang, G.D.; Wang, W.; Mei, X.S. Fabrication of superhydrophilic or superhydrophobic self-cleaning metal surfaces using picosecond laser pulses and chemical fluorination. Radiat. Eff. Defect. Solids 2016, 171, 461–473. [Google Scholar] [CrossRef]
- Ichinokawa, T.; Miyazaki, Y.; Koga, Y. Scanning tunneling microscope combing with scanning electron microscope. Ultramicroscopy 1987, 23, 115–118. [Google Scholar] [CrossRef]
- Chun, D.M.; Ngo, C.V.; Lee, K.M. Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing. CIRP Ann. Manuf. Technol. 2016, 65, 519–522. [Google Scholar] [CrossRef]
- Song, J.J.; Wang, D.R.; Hu, L.Y.; Huang, X.; Chen, Y.Q. Superhydrophobic surface fabricated by nanosecond laser and perhydropolysilazane. Appl. Surf. Sci. 2018, 455, 771–779. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.D.; Li, S.Y.; Han, Z.W.; Yu, S.R.; Ren, L.Q. Fabrication of biomimetic super-hydrophobic surface on aluminum alloy. J. Mater. Sci. 2014, 49, 1624–1629. [Google Scholar] [CrossRef]
Preparation Methods | Advantage | Shortcoming | Reference |
---|---|---|---|
Laser texturing | Less restrictions and pollution, high efficiency | Interfered by electromagnetic wave | [1] |
Electrochemical deposition | High coverage | Internal stress of coating | [2] |
Chemical etching | High reliability | High unevenness and danger of etching | [3] |
Hot embossing | Good biocompatibility and flexible processing | High temperature and pressure, poor stability | [4] |
Chemical vapor deposition | Strong controllability | Inefficient and corrosive | [5] |
Sol–gel method | Strong evenness and feasibility | Expensive and inefficient | [6] |
Hydrothermal method | Low cost and strong controllability | High temperature conditions | [7] |
Spraying method | High accuracy and good uniformity | Shadowing effect | [8] |
Variables | Representation | Variables | Representation | Variables | Representation |
---|---|---|---|---|---|
Contact angle | Radius of curvature | Ablated crater diameter | |||
Advance angle | Height | Ablation threshold fluence | |||
Retraction angle | Series | Number of laser pulses | |||
Rolling angle | Apparent contact angle of the nth stage structure | Laser repetition rate | |||
Surface tension of solid–gas | Gas–liquid ratio factor of the nth stage structure | Laser scanning speed | |||
Surface tension of solid–liquid | Spot diameter | Polarization resistance | |||
Surface tension of gas–liquid | Laser wavelength | Tafel slope of anode diagram | |||
Surface roughness factor | Focal length of the lens | Tafel slope of cathode diagram | |||
Apparent contact angle | Spot diameter on the lens surface | ||||
Intrinsic contact angle | Peak fluence in the beam | ||||
Solid–liquid ratio factor | Gaussian beam radius | ||||
Gas–liquid ratio factor | Pulse energy | ||||
Pitch | Spatial fluence profile | ||||
Diameter | Distance from the beam center |
Base Alloy | Modifier | Reference |
---|---|---|
Aluminum alloy | Perfluoro decyl triethoxysilane, AC-FAS | [1,43] |
Stainless steel | Perfluoro decyl triethoxysilane, perfluoro dodecyl trichlorosilane, 1H,1H,2H,2H-perfluorodecyltriisopropoxysilane | [9,40,44] |
Titanium alloy | Fluorinated silane, 1H, 1H, 2H, 2H-perfluorodecyltriisopropoxysilane | [12,45] |
Copper alloy | Silver nitrate, thioundecanoic acid, dodecyl mercaptan, tetradecanoics acid, perfluoro decyl triethoxysilane | [13,46,47] |
Magnesium alloy | Fluorosilane | [48] |
Controlling Factor | Lubricant | Performance | Comments | Reference |
---|---|---|---|---|
Temperature | Liquid paraffin | Slippery at high temperatures, not at low temperatures | Specific critical temperature | [53] |
Magnetic field | Silicone oil-based magnetic fluid | Slippery without magnetic field, not with magnetic field | Microstructure can be controlled | [54,55] |
Electric field | Conductive silicone lubricant | Electric field parameters affect the motion of conductive droplets | Silicone oil viscosity affects self-healing | [56] |
Photocatalytically | PDMS lubricant | Be slippery with photocatalytically | Titanium alloy oxide as substrate | [57] |
Photothermal effect | Organic gel with particles | Control the motion of surface droplets | Surface droplets include water and alcohol | [58] |
Photoelectricity | P3HT/PCBM (interfacial directional freezing) | Control the motion of surface droplets | Affected by freezing rate and mass ratio | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Tan, Z.; Zhang, C.; Tang, J.; Yao, C.; You, X.; Hao, B. Research on Metal Corrosion Resistant Bioinspired Special Wetting Surface Based on Laser Texturing Technology: A Review. Micromachines 2022, 13, 1431. https://doi.org/10.3390/mi13091431
Zhang L, Tan Z, Zhang C, Tang J, Yao C, You X, Hao B. Research on Metal Corrosion Resistant Bioinspired Special Wetting Surface Based on Laser Texturing Technology: A Review. Micromachines. 2022; 13(9):1431. https://doi.org/10.3390/mi13091431
Chicago/Turabian StyleZhang, Li, Zheng Tan, Chong Zhang, Jingrong Tang, Chi Yao, Xiangyu You, and Bo Hao. 2022. "Research on Metal Corrosion Resistant Bioinspired Special Wetting Surface Based on Laser Texturing Technology: A Review" Micromachines 13, no. 9: 1431. https://doi.org/10.3390/mi13091431
APA StyleZhang, L., Tan, Z., Zhang, C., Tang, J., Yao, C., You, X., & Hao, B. (2022). Research on Metal Corrosion Resistant Bioinspired Special Wetting Surface Based on Laser Texturing Technology: A Review. Micromachines, 13(9), 1431. https://doi.org/10.3390/mi13091431