Additive-Manufactured Platinum Thin-Film Strain Gauges for Structural Microstrain Testing at Elevated Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Strain Gauge Fabrication
2.3. Experiment Setup
2.4. Characterisation Instruments
3. Results and Discussion
3.1. Characterizations of the Pt TFSGs
3.2. Strain Testing at Room Temperature
3.3. Strain Testing at High Temperature
4. Conclusions
- By DIW technology based on Weisenberg’s effect, Pt TFSG with thickness less than 2 μm were fabricated.
- The strain response of the Pt TFSG at room temperature was well verified with a GF of 1.9 at room temperature.
- The high temperature stability experiment of the strain gauge showed that its maximum working temperature could reach 700 °C, and the resistance change rate for one hour at this temperature was only 0.017%.
- The strain test at high temperature showed that the GF of the Pt TFSG was almost unchanged when it was less than 600 °C and decreased to about 1.7 at 700 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.Z.; Anderson, N.; Bland, S.; Nutt, S.; Jursich, G. All-printed strain sensors: Building blocks of the aircraft structural health monitoring system. Sens. Actuators A Phys. 2017, 253, 165–172. [Google Scholar] [CrossRef]
- Liao, X.Q.; Liao, Q.L.; Yan, X.Q.; Liang, Q.J.; Si, H.N.; Li, M.H.; Wu, H.L.; Cao, S.Y.; Zhang, Y. Flexible and Highly Sensitive Strain Sensors Fabricated by Pencil Drawn for Wearable Monitor. Adv. Funct. Mater. 2015, 25, 2395–2401. [Google Scholar] [CrossRef]
- Siddique, S.; Park, J.G.; Andrei, P.; Liang, R. M3D aerosol jet printed buckypaper multifunctional sensors for composite structural health monitoring. Results Phys. 2019, 13, 102094. [Google Scholar] [CrossRef]
- Jin, H.; Abu-Raya, Y.S.; Haick, H. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices. Adv. Healthc. Mater. 2017, 6, 1700024. [Google Scholar] [CrossRef]
- Augustin, T.; Karsten, J.; Kotter, B.; Fiedler, B. Health monitoring of scarfed CFRP joints under cyclic loading via electrical resistance measurements using carbon nanotube modified adhesive films. Compos. Part A Appl. Sci. Manuf. 2018, 105, 150–155. [Google Scholar] [CrossRef]
- Wu, C.; Pan, X.C.; Lin, F.; Cui, Z.F.; He, Y.P.; Chen, G.C.; Zeng, Y.J.; Liu, X.L.; Chen, Q.N.; Sun, D.H.; et al. TiB2/SiCN Thin-Film Strain Gauges Fabricated by Direct Writing for High-Temperature Application. IEEE Sens. J. 2022, 22, 11517–11525. [Google Scholar] [CrossRef]
- Shen, A.; Kim, S.B.; Bailey, C.; Ma, A.W.K.; Dardona, S. Direct Write Fabrication of Platinum-Based Thick-Film Resistive Temperature Detectors. IEEE Sens. J. 2018, 18, 9105–9111. [Google Scholar] [CrossRef]
- Wu, C.; Lin, F.; Pan, X.C.; Cui, Z.F.; He, Y.P.; Chen, G.C.; Liu, X.L.; He, G.H.; Chen, Q.N.; Sun, D.H.; et al. TiB2-Modified Polymer-Derived Ceramic SiCN Double-Layer Thin Films Fabricated by Direct Writing for High-Temperature Application. Adv. Eng. Mater. 2022, 2200228. [Google Scholar] [CrossRef]
- Wang, H.Y.; Liu, K.; An, Z.H.; Wu, X.; Huang, X. Ion-Beam Sputtered Thin-Film Strain-Gauge Pressure Transducers. Sens. Actuators A Phys. 1993, 35, 265–268. [Google Scholar]
- Chung, G.S. Characteristics of tantalum nitride thin film strain gauges for harsh environments. Sens. Actuators A Phys. 2007, 135, 355–359. [Google Scholar] [CrossRef]
- Gregory, O.J.; You, T. Piezoresistive properties of ITO strain sensors prepared with controlled nanoporosity. J. Electrochem. Soc. 2004, 151, H198–H203. [Google Scholar] [CrossRef]
- Mao, N.Y.; Enrique, P.D.; Chen, A.I.H.; Zhou, N.Y.; Peng, P. Dynamic response and failure mechanisms of a laser-fabricated flexible thin film strain gauge. Sens. Actuators A Phys. 2022, 342, 113655. [Google Scholar] [CrossRef]
- Koppelhuber, A.; Bimber, O. LumiConSense A Transparent, Flexible, and Scalable Thin-Film Sensor. IEEE Comput. Graph. 2014, 34, 98–102. [Google Scholar] [CrossRef]
- Yan, L.T.; Si, W.J.; Liu, L.Y.; Zheng, Y.P.; Dai, C.N. Development of nanostructured thin film sensors. Rare Metal. Mat. Eng. 2006, 35, 21–24. [Google Scholar]
- Nayak, M.M.; Gunasekaran, N.; Muthunayagam, A.E.; Rajanna, K.; Mohan, S. Diaphragm-Type Sputtered Platinum Thin-Film Strain-Gauge Pressure Transducer. Meas. Sci. Technol. 1993, 4, 1319–1322. [Google Scholar] [CrossRef]
- Schmid, P.; Triendl, F.; Zarfl, C.; Schwarz, S.; Artner, W.; Schneider, M.; Schmid, U. Influence of the AlN/Pt-ratio on the electro-mechanical properties of multilayered AlN/Pt thin film strain gauges at high temperatures. Sens. Actuators A Phys. 2020, 302, 111805. [Google Scholar] [CrossRef]
- Liu, H.; Mao, X.L.; Yang, Z.B.; Cui, J.T.; Jiang, S.W.; Zhang, W.L. High temperature static and dynamic strain response of PdCr thin film strain gauge prepared on Ni-based superalloy. Sens. Actuators A Phys. 2019, 298, 111571. [Google Scholar] [CrossRef]
- Hans, M.; Baben, M.T.; Music, D.; Ebenhoch, J.; Primetzhofer, D.; Kurapov, D.; Arndt, M.; Rudigier, H.; Schneider, J.M. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering. J. Appl. Phys. 2014, 116, 093515. [Google Scholar] [CrossRef]
- Bose, A.K.; Zhang, X.Z.; Maddipatla, D.; Masihi, S.; Panahi, M.; Narakathu, B.B.; Bazuin, B.J.; Williams, J.D.; Mitchell, M.F.; Atashbar, M.Z. Screen-Printed Strain Gauge for Micro-Strain Detection Applications. IEEE Sens. J. 2020, 20, 12652–12660. [Google Scholar] [CrossRef]
- Fasolt, B.; Hodgins, M.; Rizzello, G.; Seelecke, S. Effect of screen printing parameters on sensor and actuator performance of dielectric elastomer (DE) membranes. Sens. Actuators A Phys. 2017, 265, 10–19. [Google Scholar] [CrossRef]
- Qi, X.; Lim, S. A Screen-Printed Metal Hybrid Composite for Wireless Wind Sensing. Nanomaterials 2022, 12, 972. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Kundu, S.; Nag, A.; Xu, Y.Z. 3D Printed Sensors for Biomedical Applications: A Review. Sensors 2019, 19, 1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Pan, X.C.; Lin, F.; Cui, Z.F.; Li, X.; Chen, G.C.; Liu, X.L.; He, Y.P.; He, G.H.; Hai, Z.Y.; et al. High-temperature electrical properties of polymer-derived ceramic SiBCN thin films fabricated by direct writing. Ceram. Int. 2022, 48, 15293–15302. [Google Scholar] [CrossRef]
- Karas, B.; Beedasy, V.; Leong, Z.; Morley, N.A.; Mumtaz, K.; Smith, P.J. Integrated Fabrication of Novel Inkjet-Printed Silver Nanoparticle Sensors on Carbon Fiber Reinforced Nylon Composites. Micromachines 2021, 12, 1185. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.Y.; Liao, Y.Z.; Li, Y.H.; Pan, D.Y.; Cao, W.X.; Yang, X.B.; Zou, F.X.; Zhou, L.M.; Zhang, Z.; Su, Z.Q. An inkjet-printed, flexible, ultra-broadband nanocomposite film sensor for in-situ acquisition of high-frequency dynamic strains. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105554. [Google Scholar] [CrossRef]
- Correia, V.; Caparros, C.; Casellas, C.; Francesch, L.; Rocha, J.G.; Lanceros-Mendez, S. Development of inkjet printed strain sensors. Smart Mater. Struct. 2013, 22, 105028. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Yu, P.S.; Liu, Y.; Zhao, J.H. High-precision resistance strain sensors of multilayer composite structure via direct ink writing: Optimized layer flatness and interfacial strength. Compos. Sci. Technol. 2021, 201, 108530. [Google Scholar] [CrossRef]
- Sullivan, K.T.; Zhu, C.; Tanaka, D.J.; Kuntz, J.D.; Duoss, E.B.; Gash, A.E. Electrophoretic Deposition of Thermites onto Micro-Engineered Electrodes Prepared by Direct-Ink Writing. J. Phys. Chem. B 2013, 117, 1686–1693. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.C. Direct ink writing of 2D material-based supercapacitors. 2D Mater. 2022, 9, 012001. [Google Scholar] [CrossRef]
- Hao, L.; Tang, D.N.; Sun, T.; Xiong, W.; Feng, Z.Y.; Evans, K.E.; Li, Y. Direct Ink Writing of Mineral Materials: A review. Int. J. Pr. Eng. Man.-Gt. 2021, 8, 665–685. [Google Scholar] [CrossRef]
- Lewis, J.A.; Smay, J.E.; Stuecker, J.; Cesarano, J. Direct ink writing of three-dimensional ceramic structures. J. Am. Ceram. Soc. 2006, 89, 3599–3609. [Google Scholar] [CrossRef]
- Kuo, J.T.W.; Yu, L.; Meng, E. Micromachined Thermal Flow Sensors-A Review. Micromachines 2012, 3, 550–573. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Jiang, S.W.; Liu, H.; Zhang, W.L.; Li, Y.R. Investigation of strain gauges based on interdigitated Ba0.5Sr0.5TiO3 thin film capacitors. Sens. Actuators A Phys. 2015, 236, 159–163. [Google Scholar] [CrossRef]
- Kazi, I.H.; Wild, P.M.; Moore, T.N.; Sayer, M. The electromechanical behavior of nichrome (80/20 wt.%) film. Thin Solid Film. 2003, 433, 337–343. [Google Scholar] [CrossRef]
- Liu, H.; Mao, X.L.; Cui, J.T.; Jiang, S.W.; Zhao, X.H.; Jiang, H.C.; Zhang, W.L. Effect of thickness on the electrical properties of PdCr strain sensitive thin film. J. Mater. Sci.-Mater. El. 2019, 30, 10475–10482. [Google Scholar] [CrossRef]
- Zarfl, C.; Schwab, S.; Schmid, P.; Hutter, H.; Schmid, U. Influence of the sputter gas composition on the electromechanical properties and on the stability of TiAlNxO1-x thin films. Sens. Actuators A Phys. 2017, 267, 552–559. [Google Scholar] [CrossRef]
- Zarfl, C.; Schmid, P.; Balogh, G.; Schmid, U. Electro-mechanical properties and oxidation behaviour of TiAlNxOy thin films at high temperatures. Sens. Actuators A Phys. 2015, 226, 143–148. [Google Scholar] [CrossRef]
- Schmid, P.; Triendl, F.; Zarfl, C.; Schwarz, S.; Artner, W.; Schneider, M.; Schmid, U. Electro-mechanical properties of multilayered aluminum nitride and platinum thin films at high temperatures. Sens. Actuators A Phys. 2019, 293, 128–135. [Google Scholar] [CrossRef]
- Schmid-Engel, H.; Uhlig, S.; Werner, U.; Schultes, G. Strain sensitive Pt-SiO2 nano-cermet thin films for high temperature pressure and force sensors. Sens. Actuators A Phys. 2014, 206, 17–21. [Google Scholar] [CrossRef]
- Kalpana, H.M.; Prasad, V.S. Development of the invar36 thin film strain gauge sensor for strain measurement. Meas. Sci. Technol. 2014, 25, 065102. [Google Scholar] [CrossRef]
- Kayser, P.; Godefroy, J.C.; Leca, L. High-Temperature Thin-Film Strain-Gauges. Sens. Actuators A Phys. 1993, 37, 328–332. [Google Scholar] [CrossRef]
- Fricke, S.; Friedberger, A.; Seidel, H.; Schmid, U. A robust pressure sensor for harsh environmental applications. Sens. Actuators A Phys. 2012, 184, 16–21. [Google Scholar] [CrossRef]
Material | Maximum Temperature (°C) | Manufacturing Method | GF | Substrate | Reference |
---|---|---|---|---|---|
Pt | 700 | DIW | 1.7–1.9 | Ni-base superalloy | This work |
TiAlNxO | 500 | Puttering | 2.2–2.5 | Sapphire | [37] |
AlN/Pt | 500 | Sputtering | ≤4.7 | Al2O3 | [16] |
Pt | 500 | Sputtering | 1.9–2.5 | Sapphire | [38] |
Pt/SiO2 | 250 | Sputtering | 18 | Si-wafers | [39] |
Pt | 440 | Sputtering | - | Sapphire | [42] |
TiAlN | 350 | Sputtering | 2.5 | Sapphire | [36] |
Invar36 | 150 | Sputtering | 2.5–4.5 | Microslides | [40] |
NiCr | 700 (with a protective layer) | Sputtering | 2.5 | Ni-base superalloy | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.; Lin, F.; Wu, C.; Zeng, Y.; Chen, G.; Chen, Q.; Sun, D.; Hai, Z. Additive-Manufactured Platinum Thin-Film Strain Gauges for Structural Microstrain Testing at Elevated Temperatures. Micromachines 2022, 13, 1472. https://doi.org/10.3390/mi13091472
Pan X, Lin F, Wu C, Zeng Y, Chen G, Chen Q, Sun D, Hai Z. Additive-Manufactured Platinum Thin-Film Strain Gauges for Structural Microstrain Testing at Elevated Temperatures. Micromachines. 2022; 13(9):1472. https://doi.org/10.3390/mi13091472
Chicago/Turabian StylePan, Xiaochuan, Fan Lin, Chao Wu, Yingjun Zeng, Guochun Chen, Qinnan Chen, Daoheng Sun, and Zhenyin Hai. 2022. "Additive-Manufactured Platinum Thin-Film Strain Gauges for Structural Microstrain Testing at Elevated Temperatures" Micromachines 13, no. 9: 1472. https://doi.org/10.3390/mi13091472
APA StylePan, X., Lin, F., Wu, C., Zeng, Y., Chen, G., Chen, Q., Sun, D., & Hai, Z. (2022). Additive-Manufactured Platinum Thin-Film Strain Gauges for Structural Microstrain Testing at Elevated Temperatures. Micromachines, 13(9), 1472. https://doi.org/10.3390/mi13091472