Real-Time CGH Generation by CUDA-OpenGL Interoperability for Adaptive Beam Steering with a MEMS Phase SLM
Abstract
:1. Introduction
2. Multi-Point and Variable Beam Steering Implemented in CUDA-OpenGL Interoperability with the TI-PLM
2.1. A CGH for Multi-Point and Variable Beam Ratio Steering
2.2. Parallel Processing of CGH Calculation
2.3. CUDA-OpenGL Interoperability for CGH Calculation, Rendering and Display
3. Multi-Point and Real-Time Beam Tracking System with Camera-Based Adaptive Beam Steering and Pre-Estimation of the Position and Size of the Target
4. Experimental Results
4.1. Benchmarking of CGH Calculation Time: On a Laptop
4.2. Benchmarking of CGH Calculation Time: Laptop with a PLM
4.3. Multi-Point and Adaptive Beam Tracking with a Variable Beam Ratio
5. Calibration of the Power Ratio for Multiple ROIs and Adaptive Beam Steering
5.1. Beam Ratio Experiment
5.2. Simulation
6. Discussions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crossland, W.; Manolis, I.; Redmond, M.; Tan, K.; Wilkinson, T.; Holmes, M.; Parker, T.; Chu, H.; Croucher, J.; Handerek, V. Holographic optical switching: The” ROSES” demonstrator. J. Lightwave Technol. 2000, 18, 1845. [Google Scholar] [CrossRef]
- Wang, M.; Zong, L.; Mao, L.; Marquez, A.; Ye, Y.; Zhao, H.; Caballero, F.J.V. LCoS SLM study and its application in wavelength selective switch. Photonics 2017, 4, 22. [Google Scholar] [CrossRef]
- Haellstig, E.; Stigwall, J.; Lindgren, M.; Sjoqvist, L. Laser beam steering and tracking using a liquid crystal spatial light modulator. In Laser Systems Technology; SPIE: Bellingham, WC, USA, 2003. [Google Scholar]
- Wang, D.; Watkins, C.; Xie, H. MEMS mirrors for LiDAR: A review. Micromachines 2020, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Tang, C.-I.; Luo, C.; Takashima, Y. Diffraction Efficiency of MEMS Phase Light Modulator, TI-PLM, for Quasi-Continuous and Multi-Point Beam Steering. Micromachines 2022, 13, 966. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Zhu, D.; Li, J.; Wang, D.; Xia, J.; Zhang, X. Fast calculation of computer generated hologram based on single Fourier transform for holographic three-dimensional display. Displays 2021, 69, 102064. [Google Scholar] [CrossRef]
- McManamon, P.F. Field Guide to Lidar; SPIE Press: Bellingham, WC, USA, 2015. [Google Scholar]
- Esmer, G.B. Real-Time Diffraction Field Calculation Methods for Computer-Generated Holograms. In Holographic Materials and Applications; IntechOpen: Vienna, Austria, 2019. [Google Scholar]
- Bartlett, T.A.; McDonald, W.C.; Hall, J.N. Adapting Texas Instruments DLP technology to demonstrate a phase spatial light modulator. In Emerging Digital Micromirror Device Based Systems and Applications XI; SPIE: Bellingham, WC, USA, 2019. [Google Scholar]
- Bartlett, T.A.; McDonald, W.C.; Hall, J.N.; Oden, P.I.; Doane, D.; Ketchum, R.S.; Byrum, T. Recent advances in the development of the Texas Instruments phase-only microelectromechanical systems (MEMS) spatial light modulator. In Emerging Digital Micromirror Device Based Systems and Applications XIII; SPIE: Bellingham, WC, USA, 2021; Volume 11698, pp. 103–116. [Google Scholar]
- Smith, B.; Hellman, B.; Gin, A.; Espinoza, A.; Takashima, Y. Single chip lidar with discrete beam steering by digital micromirror device. Opt. Express 2017, 25, 14732–14745. [Google Scholar] [CrossRef]
- Rodriguez, J.; Smith, B.; Kang, E.; Hellman, B.; Chen, G.; Gin, A.; Espinoza, A.; Takashima, Y. Beam steering by digital micro-mirror device for multi-beam and single-chip lidar. In Optical Data Storage 2018: Industrial Optical Devices and Systems; SPIE: Bellingham, WC, USA, 2018. [Google Scholar]
- Deng, X.; Guan, J.; Luo, C.; Tang, C.-I.; Lee, T.; Liu, P.; Takashima, Y. Solid-state beam steering with adaptive side lobe rejection and enhanced angular throw of MEMS phase SLM by angular spatial and phase combined modulation. In Emerging Digital Micromirror Device Based Systems and Applications XIV; SPIE: Bellingham, WC, USA, 2022. [Google Scholar]
- Kang, E.; Choi, H.; Hellman, B.; Rodriguez, J.; Smith, B.; Deng, X.; Liu, P.; Lee, T.L.-T.; Evans, E.; Hong, Y. Large etendue solid-state-lidar with MEMS-resonant mirror assisted diffractive beam steering by digital micro mirror device. In Emerging Digital Micromirror Device Based Systems and Applications XIV; SPIE: Bellingham, WC, USA, 2022. [Google Scholar]
- Nishitsuji, T.; Shimobara, T.; Kakue, T.; Ito, T. Fast calculation of computer-generated hologram of line-drawn objects without FFT. Opt. Express 2020, 28, 15907–15924. [Google Scholar] [CrossRef] [PubMed]
- Horisaki, R.; Takagi, R.; Tanida, J. Deep-learning-generated holography. Appl. Opt. 2018, 57, 3859–3863. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Ulusoy, E.; Urey, H. Non-iterative phase hologram computation for low speckle holographic image projection. Opt. Express 2016, 24, 4462–4476. [Google Scholar] [CrossRef] [PubMed]
- Kakue, T.; Wagatsuma, Y.; Yamada, S.; Nishitsuji, T.; Endo, Y.; Nagahama, Y.; Hirayama, R.; Shimobaba, T.; Ito, T. Review of real-time reconstruction techniques for aerial-projection holographic displays. Opt. Eng. 2018, 57, 061621-1–061621-11. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Harish, P.; Narayanan, P.J. Accelerating large graph algorithms on the GPU using CUDA. In Proceedings of the International Conference on High-Performance Computing, Goa, India, 18–21 December 2007; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Sanders, J.; Kandrot, E. CUDA by Example: An Introduction to General-Purpose GPU Programming; Addison-Wesley Professional: Boston, MA, USA, 2010. [Google Scholar]
- Storti, D.; Yurtoglu, M. CUDA for Engineers: An Introduction to High-Performance Parallel Computing; Addison-Wesley Professional: Boston, MA, USA, 2015. [Google Scholar]
Mono | GPU | CPU | Speedup Factor | ||
---|---|---|---|---|---|
Beam # | FPS | # pts/s | FPS | # pts/s | |
1 | 232 | 232 | 67 | 67 | 3.5 |
2 | 198 | 396 | 29 | 58 | 6.8 |
3 | 184 | 552 | 23 | 69 | 8.0 |
4 | 173 | 692 | 20 | 80 | 8.7 |
5 | 161 | 805 | 17 | 85 | 9.5 |
6 | 149 | 894 | 14 | 84 | 10.6 |
7 | 140 | 980 | 13 | 91 | 10.8 |
RGB | GPU | CPU | Speedup Factor | ||
---|---|---|---|---|---|
Beam # | FPS | # pts/s | FPS | # pts/s | |
1 | 125 | 375 | 16 | 48 | 7.8 |
2 | 94 | 564 | 9 | 54 | 10.4 |
3 | 85 | 765 | 7 | 63 | 12.1 |
4 | 77 | 924 | 6 | 72 | 12.8 |
5 | 71 | 1065 | 5 | 75 | 14.2 |
6 | 65 | 1170 | 5 | 90 | 13.0 |
7 | 60 | 1260 | 4 | 84 | 15.0 |
# of ROIs | With a PLM Connected | |
---|---|---|
PLM FPS | pts/s | |
1 | 180 | 180 |
2 | 180 | 360 |
3 | 180 | 540 |
4 | 180 | 720 |
5 | 180 | 900 |
6 | 174 | 1044 |
7 | 159 | 1113 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, C.-I.; Deng, X.; Takashima, Y. Real-Time CGH Generation by CUDA-OpenGL Interoperability for Adaptive Beam Steering with a MEMS Phase SLM. Micromachines 2022, 13, 1527. https://doi.org/10.3390/mi13091527
Tang C-I, Deng X, Takashima Y. Real-Time CGH Generation by CUDA-OpenGL Interoperability for Adaptive Beam Steering with a MEMS Phase SLM. Micromachines. 2022; 13(9):1527. https://doi.org/10.3390/mi13091527
Chicago/Turabian StyleTang, Chin-I, Xianyue Deng, and Yuzuru Takashima. 2022. "Real-Time CGH Generation by CUDA-OpenGL Interoperability for Adaptive Beam Steering with a MEMS Phase SLM" Micromachines 13, no. 9: 1527. https://doi.org/10.3390/mi13091527
APA StyleTang, C. -I., Deng, X., & Takashima, Y. (2022). Real-Time CGH Generation by CUDA-OpenGL Interoperability for Adaptive Beam Steering with a MEMS Phase SLM. Micromachines, 13(9), 1527. https://doi.org/10.3390/mi13091527