Optimal Growth Conditions for Forming c-Axis (002) Aluminum Nitride Thin Films as a Buffer Layer for Hexagonal Gallium Nitride Thin Films Produced with In Situ Continual Radio Frequency Sputtering
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. XRD
3.1.1. Change in Sputtering Power and Nitrogen Flow Ratios
3.1.2. Effects of Thin-Film Growth Temperature and N2 Flow Rate
3.2. X-ray Photoelectron Spectroscopy
3.3. AFM
3.4. Hardness Measurement
3.5. XRD and Photoluminescence Spectroscopy for Si/GaN and Si/AlN/GaN
3.6. Secondary Ion Mass Spectrometry Measurement
3.7. Hall-Effect Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morkoç, H. Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Pan, T.S.; Zhang, Y.; Huang, J.; Zeng, B.; Hong, D.H.; Wang, S.L.; Zeng, H.Z.; Gao, M.; Huang, W.; Lin, Y. Enhanced thermal conductivity of polycrystalline aluminum nitride thin films by optimizing the interface structure. J. Appl. Phys. 2012, 112, 044905. [Google Scholar] [CrossRef]
- Romanczyk, B.; Li, W.; Guidry, M.; Hatui, N.; Krishna, A.; Wurm, C.; Keller, S.; Mishra, U.K. N-polar GaN-on-Sapphire deep recess HEMTs with high W-band power density. IEEE Electron Device Lett. 2020, 41, 1633–1636. [Google Scholar] [CrossRef]
- Ishida, M.; Ueda, T.; Tanaka, T.; Ueda, D. GaN on Si technologies for power switching devices. IEEE Trans. Electron Devices 2013, 60, 3053–3059. [Google Scholar] [CrossRef]
- Krishna, A.; Raj, A.; Hatui, N.; Keller, S.; Mishra, U.K. Demonstration of Acceptor-Like Traps at Positive Polarization Interfaces in Ga-Polar P-type (AlGaN/AlN)/GaN Superlattices. Crystals 2022, 12, 784. [Google Scholar] [CrossRef]
- Krishna, A.; Raj, A.; Hatui, N.; Keller, S.; Denbaars, S.; Mishra, U.K. Acceptor traps as the source of holes in p-type N-polar GaN/(AlN/AlGaN) superlattices. Appl. Phys. Lett. 2022, 120, 132104. [Google Scholar] [CrossRef]
- Barkad, H.A.; Soltani, A.; Mattalah, M.; Gerbedoen, J.C.; Rousseau, M.; de Jaeger, J.C.; BenMoussa, A.; Mortet, V.; Haenen, K.; Benbakhti, B.; et al. Design, fabrication and physical analysis of TiN/AlN deep UV photodiodes. J. Phys. D. Appl. Phys. 2010, 43, 465104–465108. [Google Scholar] [CrossRef]
- Faria, F.A.; Nomoto, K.; Hu, Z.; Rouvimov, S.; Xing, H.; Jena, D. Low temperature AlN growth by MBE and its application in HEMTs. J. Cryst. Growth 2015, 425, 133–137. [Google Scholar] [CrossRef]
- Han, S.; Chen, H.-Y.; Cheng, C.-H.; Lin, J.-H.; Shih, H.C. Aluminum nitride films synthesized by dual ion beam sputtering. J. Mater. Res. 2004, 19, 3521–3525. [Google Scholar] [CrossRef]
- Sharma, A.K.; Thareja, R.K. Pulsed laser ablation of aluminum in the presence of nitrogen: Formation of aluminum nitride. J. Appl. Phys. 2000, 88, 7334–7338. [Google Scholar] [CrossRef]
- Mednikarov, B.; Spasov, G.; Babeva, T. Aluminum Nitride layers prepared by DC/RF magnetron sputtering. J. Optoelectron. Adv. Mater. 2005, 7, 1421–1427. [Google Scholar]
- Caliendo, C.; Imperaton, P.; Cianci, E. Structural, morphological, and acoustic properties of AlN thick films sputtered on Si (001) and Si (111) substrates at low temperature. Thin Solid Film. 2003, 441, 32–37. [Google Scholar] [CrossRef]
- Keller, S.; Heikman, S.; Shen, L.; Smorchkova, I.; DenBaars, S.; Mishra, U. GaN–GaN junctions with ultrathin AlN interlayers: Expanding heterojunction design. Appl. Phys. Lett. 2002, 80, 4387–4389. [Google Scholar] [CrossRef]
- Shen, L.; Heikman, S.; Moran, B.; Coffie, R.; Zhang, N.-Q.; Buttari, D.; Smorchkova, I.; Keller, S.; DenBaars, S.; Mishra, U. AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Lett. 2001, 22, 457–459. [Google Scholar] [CrossRef]
- Zambrano-Serrano, M.A.; Hernandez-Gutierrez, C.A.; de Melo, O.; Behar, M.; Salvador, G.-H.; Casallas-Moreno, Y.L.; Pedraza, A.P.; Hernandez-Robles, A.; Bahena, D.; Yee-Rendon, C.M. Effects of heavy Si doping on the structural and optical properties of n-GaN/AlN/Si (111) heterostructures. Mater. Res. Express 2022, 9, 065903. [Google Scholar] [CrossRef]
- Iborra, E.; Olivares, J.; Clement, M.; Vergara, L.; Sanz-Hervás, A.; Sangrador, J. Piezoelectric properties and residual stress of sputtered AlN thin films for MEMS applications. Sens. Actuators A: Phys. 2004, 115, 501–507. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Joglekar, M.M.; Manhas, S.K. Influence of Process Parameters and Formation of Highly c-Axis Oriented AlN Thin Films on Mo by Reactive Sputtering. J. Electron. Mater. 2018, 47, 7520–7530. [Google Scholar] [CrossRef]
- Zhang, J.X.; Cheng, H.; Chen, Y.Z.; Uddin, A.; Yuan, S.; Geng, S.J.; Zhang, S. Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering. Surf. Coat. Technol. 2005, 198, 68–73. [Google Scholar] [CrossRef]
- Medjani, F.; Sanjinés, R.; Allidi, G.; Karimi, A. Effect of substrate temperature and bias voltage on the crystallite orientation in RF magnetron sputtered AlN thin films. Thin Solid Film. 2006, 515, 260–265. [Google Scholar] [CrossRef]
- Kar, J.; Bose, G.; Tuli, S. A study on the interface and bulk charge density of AlN films with sputtering pressure. Vacuum 2006, 81, 494–498. [Google Scholar] [CrossRef]
- Guo, Q.; Tanaka, T.; Nishio, M.; Ogawa, H. Growth properties of AlN films on sapphire substrates by reactive sputtering. Vacuum 2006, 80, 716–718. [Google Scholar] [CrossRef]
- Yu, H.; Caliskan, D.; Ozbay, E. Growth of high crystalline quality semi-insulating GaN layers for high electron mobility transistor applications. J. Appl. Phys. 2006, 100, 033501. [Google Scholar] [CrossRef]
- Semond, F.; Lorenzini, P.; Grandjean, N.; Massies, J. High-electron-mobility AlGaN/GaN heterostructures grown on Si (111) by molecular-beam epitaxy. Appl. Phys. Lett. 2001, 78, 335–337. [Google Scholar] [CrossRef]
- Zamir, S.; Meyler, B.; Zolotoyabko, E.; Salzman, J. The effect of AlN buffer layer on GaN grown on (1 1 1)-oriented Si substrates by MOCVD. J. Cryst. Growth 2000, 218, 181–190. [Google Scholar] [CrossRef]
- Taurino, A.; Signore, M.A.; Catalano, M.; Kim, M.J. (1 0 1) and (0 0 2) oriented AlN thin films deposited by sputtering, materials. Letters 2017, 200, 18–20. [Google Scholar]
- Iqbal, A.; Mohd-Yasin, F. Reactive Sputtering of Aluminum Nitride (002) Thin Films for Piezoelectric Applications: A Review. Sensors 2018, 18, 1797. [Google Scholar] [CrossRef]
- Ishihara, M.; Li, S.J.; Yumoto, H.; Akashi, K.; Ide, Y. Control of preferential orientation of AlN films prepared by the reactive sputtering method. Thin Solid Film. 1998, 316, 152–157. [Google Scholar] [CrossRef]
- Cheng, H.E.; Lin, T.C.; Chen, W.C. Preparation of [0 0 2] oriented AlN thin films by mid frequency reactive sputtering technique. Thin Solid Film. 2003, 425, 85–89. [Google Scholar] [CrossRef]
- Cheng, H.; Sun, Y.; Zhang, J.; Zhang, Y.; Yuan, S.; Hing, P. AlN films deposited under various nitrogen concentrations by RF reactive sputtering. J. Cryst. Growth 2003, 254, 46–54. [Google Scholar] [CrossRef]
- Khan, S.; Shahid, M.; Mahmood, A.; Shah, A.; Ahmed, I.; Mehmood, M.; Alam, M. Texture of the nano-crystalline AlN thin films and the growth conditions in DC magnetron sputtering. Prog. Nat. Sci. Mater. Int. 2015, 25.4, 282–290. [Google Scholar] [CrossRef]
- Alevli, M.; Ozgit, C.; Donmez, I.; Biyikli, N. Structural properties of AlN films deposited by plasma-enhanced atomic layer deposition at different growth temperatures. Phys. Status Solidi 2012, 209, 266–271. [Google Scholar] [CrossRef]
- King, S.W.; Barnak, J.P.; Bremser, M.D.; Tracy, K.M.; Ronning, C.; Davis, R.F.; Nemanich, R.J. Cleaning of AlN and GaN surfaces. J. Appl. Phys. 1998, 84, 5248–5260. [Google Scholar] [CrossRef]
- Chen, D.; Xu, D.; Wang, J.; Zhang, Y. Investigation of chemical etching of AlN film with different textures by x-ray photoelectron spectroscopy. J. Phys. D Appl. Phys. 2008, 41, 235303. [Google Scholar] [CrossRef]
- Mccauley, J.W.; Krishnan, K.M.; Rai, R.S.; Thomas, G. (Eds.) Anion-Controlled Microstructures in the AIN-Al2O3System; Plenum Publishing Corporation: New York, NY, USA, 1988; pp. 577–590. [Google Scholar]
- Van Tendeloo, G.; Faber, K.T.; Thomas, G. Characterization of AlN ceramics containing long period polytypes. J. Mater. Sci. 1983, 18, 525–532. [Google Scholar] [CrossRef]
- Brien, V.; Pigeat, P. Correlation between the oxygen content and the morphology of AlN films grown by RF magnetron sputtering. J. Cryst. Growth 2008, 310, 3890–3895. [Google Scholar] [CrossRef]
- Tabary, P.; Servant, C. Crystalline and microstructure study of the AlN–Al2O3 section in the Al–N–O system. I. Polytypes and -AlON spinel phase. J. Appl. Crystallogr. 1999, 32, 241–252. [Google Scholar] [CrossRef]
- Kazan, M.; Rufflé, B.; Zgheib, C.; Masri, P. Oxygen behaviour in Aluminum nitride. Appl. Phys. 2005, 98, 103529. [Google Scholar] [CrossRef]
- Youngman, R.A.; Harris, J.H. luminescence studies of oxygen-related defects in Aluminum nitride. J. Am. Ceram. Soc. 1990, 46, 3238–3246. [Google Scholar] [CrossRef]
- Harris, J.H.; Youngman, R.A.; Teller, R.G. On the nature of the oxygen-related defect in Aluminum nitride. J. Mater. Res. 1990, 44128, 1763–1773. [Google Scholar] [CrossRef]
- Liao, H.M. Surface composition of AlN powders studied by x-ray photoelectron spectroscopy and bremsstrahlung-excited Auger electron spectroscopy. J. Vac. Sci. Technol. A Vac. Surf. Film 1993, 11, 2681. [Google Scholar] [CrossRef]
- García-Méndez, M.; Morales-Rodríguez, S.; Shaji, S.; Krishnan, B.; Bartolo-Pérez, P. Structural properties of AlN films with oxygen content deposited by reactive magnetron sputtering: XRD and XPS characterization. Surf. Rev. Lett. 2011, 18, 23–31. [Google Scholar] [CrossRef]
- Jose, F.; Ramaseshan, R.; Dash, S.; Bera, S.; Tyagi, A.K.; Raj, B. Response of magnetron sputtered AlN films to controlled atmosphere annealing. J. Phys. D. Appl. Phys. 2010, 43, 075304. [Google Scholar] [CrossRef]
- Zhang, Y. Characterization of as-received hydrophobic treated AlN powder using XPS. J. Mater. Sci. Lett. 2002, 21, 1603–1605. [Google Scholar] [CrossRef]
- Gungor, N.; Alevli, M. Oxygen incorporation in AlN films grown by plasma-enhanced atomic layer deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 2022, 40, 022404. [Google Scholar] [CrossRef]
- Rosenberger, L.; Baird, R.; McCullen, E.; Auner, G.; Shreve, G. XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces. Interfaces Thin Film. 2008, 40, 1254–1261. [Google Scholar]
- Ababneh, A.; Schmid, U.; Hernando, J.; Sánchez-Rojas, J.L.; Seidel, H. The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films. Mater. Sci. Eng. B 2010, 172, 253–258. [Google Scholar] [CrossRef]
- Rille, E.; Zarwasch, R.; Pulker, H. Properties of reactively d.c.-magnetron-sputtered A1N thin films. Thin Solid Film. 1993, 228, 215–217. [Google Scholar] [CrossRef]
- Dong, X.; Wu, Z.; Xu, X.; Wang, T.; Jiang, Y. Effects of duty cycle and oxygen flow rate on the formation and properties of vanadium oxide films deposited by pulsed reactive sputtering. Vacuum 2014, 104, 97–104. [Google Scholar] [CrossRef]
- Manova, D.; Dimitrova, V.; Fukarek, W.; Karpuzovc, D. Investigation of D.C.-reactive magnetron-sputtered AlN thin films by electron microprobe analysis, X-ray photoelectron spectroscopy and polarised infra-red reflection. Surf. Coat. Technol. 1998, 106, 205–208. [Google Scholar] [CrossRef]
- Thompson, C.V.; Carel, R. Stress and grain growth in thin films. J. Mech. Phys. Solids 1996, 44, 657. [Google Scholar] [CrossRef]
- Wang, X.; Kolitsch, A.; Prokert, F.; Möller, W. Ion beam assisted deposition of AlN monolithic films and Al/AlN multilayers: A comparative study. Surf Coat Technol. 1998, 103–104, 334. [Google Scholar] [CrossRef]
- Panda, P.; Ramaseshan, R.; Ravi, N.; Mangamma, G.; Jose, F.; Dash, S.; Suematsu, H. Reduction of residual stress in AlN thin films synthesized by magnetron sputtering technique. Mater. Chem. Phys. 2017, 200, 78–84. [Google Scholar] [CrossRef]
- Oliveira, I.; Grigorov, K.; Maciel, H.; Massi, M.; Otani, C. High textured AlN thin films grown by RF magnetron sputtering; composition, structure, morphology and hardness. Vacuum 2004, 75, 331–338. [Google Scholar] [CrossRef]
- Fu, J. A general approach to determine texture patterns using pole figure. J. Mater. Res. Technol. 2021, 14, 1284–1291. [Google Scholar] [CrossRef]
- Serban, E.A.; Palisaitis, J.; Junaid, M.; Tengdelius, L.; Högberg, H.; Hultman, L.; Persson, P.O.Å.; Birch, J.; Hsiao, C.-L. Magnetron Sputter Epitaxy of High-Quality GaN Nanorods on Functional and Cost-Effective Templates/Substrates. Energies 2017, 10, 1322. [Google Scholar] [CrossRef]
- Liu, W.-S.; Chang, Y.-L.; Chen, H.-Y. Growth of GaN thin film on amorphous glass substrate by direct-current pulse sputtering deposition technique. Coatings 2019, 9, 419. [Google Scholar] [CrossRef]
- Qiu, X.; Segawa, Y.; Xue, Q.; Xue, Q.; Sakurai, T. Influence of threading dislocations on the near-band edge photoluminescence of wurtzite GaN thin films on SiC substrate. Appl. Phys. Lett. 2000, 77, 1316–1318. [Google Scholar] [CrossRef]
- Steckl, A.; Deveajan, J.; Tran, C.; Stall, R. Growth and characterization of GaN thin films on SiC SOI substrates. J. Electron. Mater. 1997, 26, 217–223. [Google Scholar] [CrossRef]
- Monish, M.; Nayak, C.; Sutar, D.S.; Jha, S.N. X-ray absorption study of defects in reactively sputtered GaN films displaying large variation of conductivity. Semicond. Sci. Technol. 2021, 36, 075019. [Google Scholar] [CrossRef]
Sample | Surface | 50 nm (Depth) | 100 nm (Depth) | ||||||
---|---|---|---|---|---|---|---|---|---|
Al at% | N at% | O at% | Al at% | N at% | O at% | Al at% | N at% | O at% | |
N 20 | 15.1 | 10.1 | 72.4 | 24.4 | 40.5 | 25.1 | 25 | 40.4 | 24.6 |
N 30 | 21.1 | 12.6 | 62.3 | 26.9 | 43.8 | 20.5 | 26.8 | 44.5 | 21.7 |
N 40 | 27.6 | 22.6 | 46.4 | 31 | 50.5 | 15.6 | 32 | 52 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.-S.; Gururajan, B.; Wu, S.-H.; Huang, L.-C.; Chi, C.-K.; Jiang, Y.-L.; Kuo, H.-C. Optimal Growth Conditions for Forming c-Axis (002) Aluminum Nitride Thin Films as a Buffer Layer for Hexagonal Gallium Nitride Thin Films Produced with In Situ Continual Radio Frequency Sputtering. Micromachines 2022, 13, 1546. https://doi.org/10.3390/mi13091546
Liu W-S, Gururajan B, Wu S-H, Huang L-C, Chi C-K, Jiang Y-L, Kuo H-C. Optimal Growth Conditions for Forming c-Axis (002) Aluminum Nitride Thin Films as a Buffer Layer for Hexagonal Gallium Nitride Thin Films Produced with In Situ Continual Radio Frequency Sputtering. Micromachines. 2022; 13(9):1546. https://doi.org/10.3390/mi13091546
Chicago/Turabian StyleLiu, Wei-Sheng, Balaji Gururajan, Sui-Hua Wu, Li-Cheng Huang, Chung-Kai Chi, Yu-Lun Jiang, and Hsing-Chun Kuo. 2022. "Optimal Growth Conditions for Forming c-Axis (002) Aluminum Nitride Thin Films as a Buffer Layer for Hexagonal Gallium Nitride Thin Films Produced with In Situ Continual Radio Frequency Sputtering" Micromachines 13, no. 9: 1546. https://doi.org/10.3390/mi13091546
APA StyleLiu, W. -S., Gururajan, B., Wu, S. -H., Huang, L. -C., Chi, C. -K., Jiang, Y. -L., & Kuo, H. -C. (2022). Optimal Growth Conditions for Forming c-Axis (002) Aluminum Nitride Thin Films as a Buffer Layer for Hexagonal Gallium Nitride Thin Films Produced with In Situ Continual Radio Frequency Sputtering. Micromachines, 13(9), 1546. https://doi.org/10.3390/mi13091546