Design and Implementation of a SiC-Based Multifunctional Back-to-Back Three-Phase Inverter for Advanced Microgrid Operation
Abstract
:1. Introduction
2. Mathematical Modeling of Proposed BTB Inverter and Controllers
2.1. Grid Inverter
2.2. Grid Inverter Controllers
2.3. MG Inverter
2.4. MG Inverter Controllers
3. Quantification Design of Proposed Controllers
3.1. Grid Inverter Controllers
3.2. MG Inverter Controllers
4. Simulation and Implementation
4.1. Simulation Results
4.1.1. Case 1
4.1.2. Case 2
4.2. Implementation Results
4.2.1. Case 1
4.2.2. Case 2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, J.; Ji, C.; Wang, J.; Ke, M. A review on optimization dispatching and control for microgrid. JPCS 2019, 1176, 042046. [Google Scholar] [CrossRef]
- Beheshtaein, S.; Cuzner, R.M.; Forouzesh, M.; Savaghebi, M.; Guerrero, J.M. DC Microgrid Protection: A Comprehensive Review. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 1, 1–25. [Google Scholar] [CrossRef]
- Rosado, S.P.; Khadem, S.K. Development of Community Grid: Review of Technical Issues and Challenges. IEEE Trans. Ind. Appl. 2019, 55, 1171–1179. [Google Scholar] [CrossRef]
- Boqtob, O.; El Moussaoui, H.; El Markhi, H.; Lamhamdi, T. Microgrid energy management system: A state-of-the-art review. J. Electr. Syst. 2019, 15, 53–67. [Google Scholar]
- Alkahtani, A.A.; Alfalahi, S.T.Y.; Athamneh, A.A.; Al-Shetwi, A.Q.; Mansor, M.B.; Hannan, M.A.; Agelidis, V.G. Power Quality in Microgrids Including Supraharmonics: Issues, Standards, and Mitigations. IEEE Access 2020, 8, 127104–127122. [Google Scholar] [CrossRef]
- Allam, M.A.; Hamad, A.A.; Kazerani, M. A Sequence-Component-Based Power-Flow Analysis for Unbalanced Droop-Controlled Hybrid AC/DC Microgrids. IEEE Trans. Sustain. Energy 2019, 10, 1248–1261. [Google Scholar] [CrossRef]
- Ahmed, M.; Meegahapola, L.; Vahidnia, A.; Datta, M. Analysis and mitigation of low-frequency oscillations in hybrid AC/DC microgrids with dynamic loads. IET Gener. Transm. Distrib. 2019, 13, 1477–1488. [Google Scholar] [CrossRef]
- Ghadiriyan, S.; Rahimi, M. Mathematical representation, stability analysis and performance improvement of DC microgrid system comprising hybrid wind/battery sources and CPLs. IET Gener. Transm. Distrib. 2019, 13, 1845–1855. [Google Scholar] [CrossRef]
- Li, Z.; Shahidehpour, M. Small-Signal Modeling and Stability Analysis of Hybrid AC/DC Microgrids. IEEE Trans. Smart Grid 2019, 10, 2080–2095. [Google Scholar] [CrossRef]
- Peng, H.; Su, M.; Li, S.; Li, C. Static Security Risk Assessment for Islanded Hybrid AC/DC Microgrid. IEEE Access 2019, 7, 37545–37554. [Google Scholar] [CrossRef]
- Sadeghi, M.; Khederzadeh, M. Hybrid multi-DC–AC MG based on multilevel interlinking converter. IET Power Electron. 2019, 12, 1187–1194. [Google Scholar] [CrossRef]
- Hamad, A.A.; Nassar, M.E.; El-Saadany, E.F.; Salama, M.M.A. Optimal Configuration of Isolated Hybrid AC/DC Microgrids. IEEE Trans. Smart Grid 2019, 10, 2789–2798. [Google Scholar] [CrossRef]
- Nejabatkhah, F.; Li, Y.W.; Tian, H. Power Quality Control of Smart Hybrid AC/DC Microgrids: An Overview. IEEE Access 2019, 7, 52295–52318. [Google Scholar] [CrossRef]
- Hettiarachchi, H.W.D.; Hemapala, K.T.M.U.; Jayasekara, A.G.B.P. Review of Applications of Fuzzy Logic in Multi-Agent-Based Control System of AC-DC Hybrid Microgrid. IEEE Access 2019, 7, 1284–1299. [Google Scholar] [CrossRef]
- Lin, P.; Jin, C.; Xiao, J.; Li, X.; Shi, D.; Tang, Y.; Wang, P. A Distributed Control Architecture for Global System Economic Operation in Autonomous Hybrid AC/DC Microgrids. IEEE Trans. Smart Grid 2019, 10, 2603–2617. [Google Scholar] [CrossRef]
- Agrawal, A.; Gupta, R. Distributed coordination control of hybrid energy resources for power sharing in coupled hybrid DC/AC microgrid using paralleled IFCs/ILCs. IET Smart Grid 2019, 2, 89–105. [Google Scholar] [CrossRef]
- Zhou, Q.; Shahidehpour, M.; Li, Z.; Xu, X. Two-Layer Control Scheme for Maintaining the Frequency and the Optimal Economic Operation of Hybrid AC/DC Microgrids. IEEE Trans. Power Syst. 2019, 34, 64–75. [Google Scholar] [CrossRef]
- Hossain, A.; Pota, H.R.; Hossain, J.; Blaabjerg, F. Evolution of microgrids with converter-interfaced generations: Challenges and opportunities. JEPE 2019, 109, 160–186. [Google Scholar] [CrossRef]
- Akhtar, Z.; Saqib, M.A. Microgrids formed by renewable energy integration into power grids pose electrical protection challenges. Renew. Energ. 2016, 99, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Pashajavid, E.; Shahnia, F.; Ghosh, A. Development of a Self-Healing Strategy to Enhance the Overloading Resilience of Islanded Microgrids. IEEE Trans. Smart Grid 2017, 8, 868–880. [Google Scholar]
- Hong, Y.Y.; Gu, J.L.; Hsu, F.Y. Design and Realization of Controller for Static Switch in Microgrid Using Wavelet-Based TSK Reasoning. IEEE Trans. Ind. Inform. 2018, 14, 4864–4872. [Google Scholar] [CrossRef]
- Mariama, S.M.; Scipioni, A.; Davat, B. Study of an Injection on the Mamwe Comoros Network of Solar Photovoltaic Energy through a Static Switch. ASRJETS 2018, 46, 100–110. [Google Scholar]
- Gwon, G.H.; Kim, C.H.; Oh, Y.S.; Noh, C.H.; Jung, T.H.; Han, J. Mitigation of voltage unbalance by using static load transfer switch in bipolar low voltage DC distribution system. JEPE 2017, 90, 158–167. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, J.; Liu, Y. Finite-control-set model predictive control scheme of three-phase four-leg back-to-back converter-fed induction motor drive. IET Electr. Power Appl. 2017, 11, 761–767. [Google Scholar] [CrossRef]
- Shen, L.; Bozhko, S.; Asher, G.; Patel, C.; Wheeler, P. Active DC-Link Capacitor Harmonic Current Reduction in Two-Level Back-to-Back Converter. IEEE Trans. Power Electr. 2016, 31, 6947–6954. [Google Scholar] [CrossRef]
- Videt, A.; Messaoudi, M.; Idir, N.; Boulharts, H.; Vang, H. PWM Strategy for the Cancellation of Common-Mode Voltage Generated by Three-Phase Back-to-Back Inverters. IEEE Trans. Power Electr. 2017, 32, 2675–2686. [Google Scholar] [CrossRef]
- Abdelsalam, I.; Adam, G.P.; Williams, B.W. Current source back-to-back converter for wind energy conversion systems. IET Renew. Power Gen. 2016, 10, 1552–1561. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Zhao, A.; Deng, J.; Xu, D. Zero-Voltage-Switching SiC-MOSFET Three-Phase Four-Wire Back-to-Back Converter. IEEE IEEE J. Emerg. Sel. Top. Power Electron. 2017, 7, 722–735. [Google Scholar] [CrossRef]
- Shen, L.; Bozhko, S.; Hill, C.I.; Wheeler, P. DC-Link Capacitor Second Carrier Band Switching Harmonic Current Reduction in Two-Level Back-to-Back Converters. IEEE Trans. Power Electr. 2018, 33, 3567–3574. [Google Scholar] [CrossRef]
- Wu, T.F.; Lee, P.H.; Lin, L.C.; Chang, C.H.; Chen, Y.K. Circulating Current Reduction for Three-Phase Back-to-Back Transformerless Inverter With SPWM-Based D-Σ Digital Control. IEEE Trans. Power Electr. 2017, 33, 1591–1601. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Rated capacity, S | 1 kVA |
Grid lien voltage, VL-L | 220 V |
DC link voltage, Vdc | 400 V |
Carrier amplitude, Vtri | 5 V |
Grid frequency, f1 | 60 Hz |
DC link capacitor, Cdc | 4080 μF |
Filter inductor 1, Lf1 | 3 mH |
Filter inductor 2, Lf2 | 0.5 mH |
Grid inductance, Lg1 | 1 mH |
Filter capacitor, Cf1 | 10 μF |
Damping resistor, R | 10 Ω |
DC link voltage sensing factor, Kdc | 0.01 V/V |
AC voltage sensing factor, Kv | 0.01 V/A |
Item | Value |
---|---|
Inner-loop current controller P gain | 80 |
Inner-loop current controller gain | 0.025 |
DC link voltage controller P gain | 3 |
DC link voltage controller I gain | 1110 |
Reactive power controller P gain | 1.6 |
Reactive power controller I gain | 3040 |
Item | Value |
---|---|
Inner-loop current controller P gain | 80 |
Inner-loop current controller gain | 0.025 |
Active power controller P gain | 1.6 |
Active power controller I gain | 3040 |
Reactive power controller P gain | 1.6 |
Reactive power controller I gain | 3040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.-T.; Zheng, Z.-Y. Design and Implementation of a SiC-Based Multifunctional Back-to-Back Three-Phase Inverter for Advanced Microgrid Operation. Micromachines 2023, 14, 134. https://doi.org/10.3390/mi14010134
Ma C-T, Zheng Z-Y. Design and Implementation of a SiC-Based Multifunctional Back-to-Back Three-Phase Inverter for Advanced Microgrid Operation. Micromachines. 2023; 14(1):134. https://doi.org/10.3390/mi14010134
Chicago/Turabian StyleMa, Chao-Tsung, and Zhi-Yuan Zheng. 2023. "Design and Implementation of a SiC-Based Multifunctional Back-to-Back Three-Phase Inverter for Advanced Microgrid Operation" Micromachines 14, no. 1: 134. https://doi.org/10.3390/mi14010134
APA StyleMa, C. -T., & Zheng, Z. -Y. (2023). Design and Implementation of a SiC-Based Multifunctional Back-to-Back Three-Phase Inverter for Advanced Microgrid Operation. Micromachines, 14(1), 134. https://doi.org/10.3390/mi14010134