Molecular Machines and Microrobots: Nanoarchitectonics Developments and On-Water Performances
Abstract
:1. Introduction: Nanoarchitectonics
2. From Recent Examples
2.1. Molecular Systems and Molecular Machines
2.2. Micromachines and Microrobots
3. Working on Water
3.1. Molecular Machines at the Air-Water Interface
3.2. Microrobots at the Air-Water Interface
4. Perspectives
Funding
Conflicts of Interest
References
- Ito, H.; Segawa, Y.; Murakami, K.; Itami, K. Polycyclic arene synthesis by annulative π-extension. J. Am. Chem. Soc. 2019, 141, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Au, Y.K.; Xie, Z. Recent advances in transition metal-catalyzed selective B-H functionalization of o-carboranes. Bull. Chem. Soc. Jpn. 2021, 94, 879–899. [Google Scholar] [CrossRef]
- Fan, W.; Matsuno, T.; Han, Y.; Wang, X.; Zhou, Q.; Isobe, H.; Wu, J. Synthesis and chiral resolution of twisted carbon nanobelts. J. Am. Chem. Soc. 2021, 143, 15924–15929. [Google Scholar] [CrossRef] [PubMed]
- Nakada, M. Research on the efficient enantioselective total synthesis of useful bioactive polycyclic compounds. Bull. Chem. Soc. Jpn. 2022, 95, 1117–1147. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Lang, X.; Gopalan, S.; Fu, W.; Ramakrishna, S. Photocatalytic water splitting utilizing electrospun semiconductors for solar hydrogen generation: Fabrication, modification and performance. Bull. Chem. Soc. Jpn. 2021, 94, 8–20. [Google Scholar] [CrossRef]
- Peera, S.G.; Koutavarapu, R.; Chao, L.; Singh, L.; Murugadoss, G.; Rajeshkhanna, G. 2D MXene nanomaterials as electrocatalysts for hydrogen evolution reaction (HER): A review. Micromachines 2022, 13, 1499. [Google Scholar] [CrossRef]
- Tokoro, H.; Nakabayashi, K.; Nagashima, S.; Song, Q.; Yoshikiyo, M.; Ohkoshi, S. Optical properties of epsilon iron oxide nanoparticles in the millimeter- and terahertz-wave regions. Bull. Chem. Soc. Jpn. 2022, 95, 538–552. [Google Scholar] [CrossRef]
- Kamigaito, M.; Ando, T.; Sawamoto, M. Metal-catalyzed living radical polymerization. Chem. Rev. 2001, 101, 3689–3746. [Google Scholar] [CrossRef]
- Percec, V.; Xiao, Q. Helical self-organizations and emerging functions in architectures, biological and synthetic macromolecules. Bull. Chem. Soc. Jpn. 2021, 94, 900–928. [Google Scholar] [CrossRef]
- Zhang, W.; You, L.; Meng, X.; Wang, B.; Lin, D. Recent advances on conducting polymers based nanogenerators for energy harvesting. Micromachines 2021, 12, 1308. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Seto, N.; Chida, K.; Yoshii, T.; Mizuno, M.; Nishihara, H.; Ohtani, S.; Ogoshi, T. Synthesis of hexa-aminated trinaphtho[3.3.3]propellane and its porous polymer solids with alkane adsorption properties. Bull. Chem. Soc. Jpn. 2022, 95, 1296–1302. [Google Scholar] [CrossRef]
- Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375. [Google Scholar] [CrossRef] [PubMed]
- Hosono, N. Design of porous coordination materials with dynamic properties. Bull. Chem. Soc. Jpn. 2021, 94, 60–69. [Google Scholar] [CrossRef]
- Bieniek, A.; Terzyk, A.P.; Wiśniewski, M.; Roszek, K.; Kowalczyk, P.; Sarkisov, L.; Keskin, S.; Kaneko, K. MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: Recent advances and perspectives. Prog. Mater. Sci. 2021, 117, 100743. [Google Scholar] [CrossRef]
- Takezawa, H.; Fujita, M. Molecular confinement effects by self-assembled coordination cages. Bull. Chem. Soc. Jpn. 2021, 94, 2351–2369. [Google Scholar] [CrossRef]
- Datta, S.; Kato, Y.; Higashiharaguchi, S.; Aratsu, K.; Isobe, A.; Saito, T.; Prabhu, D.D.; Kitamoto, Y.; Hollamby, M.J.; Smith, A.J.; et al. Self-assembled poly-catenanes from supramolecular toroidal building blocks. Nature 2020, 583, 400–405. [Google Scholar] [CrossRef]
- Akutagawa, T. Chemical design and physical properties of dynamic molecular assemblies. Bull. Chem. Soc. Jpn. 2021, 94, 1400–1420. [Google Scholar] [CrossRef]
- Bezrukov, A.; Galyametdinov, Y. Activation and switching of supramolecular chemical signals in multi-output microfluidic devices. Micromachines 2022, 13, 1778. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Yang, X.N.; Wu, H.; Tao, Z.; Xiao, X. Construction of supramolecular fluorescent probe by a water-soluble pillar[5]arene and its recognition of carbonate ion. Bull. Chem. Soc. Jpn. 2022, 95, 116–120. [Google Scholar] [CrossRef]
- Yang, J.; Yamato, M.; Shimizu, T.; Sekine, H.; Ohashi, K.; Kanzaki, M.; Ohki, T.; Nishida, K.; Okano, T. Reconstruction of functional tissues with cell sheet engineering. Biomaterials 2007, 28, 5033–5043. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, Y.R.; Kanai, M. Chemical insights into liquid-liquid phase separation in molecular biology. Bull. Chem. Soc. Jpn. 2021, 94, 1045–1058. [Google Scholar] [CrossRef]
- Mijanović, O.; Pylaev, T.; Nikitkina, A.; Artyukhova, M.; Branković, A.; Peshkova, M.; Bikmulina, P.; Turk, B.; Bolevich, S.; Avetisov, S.; et al. Tissue engineering meets nanotechnology: Molecular mechanism modulations in cornea regeneration. Micromachines 2021, 12, 1336. [Google Scholar] [CrossRef]
- Sahayasheela, V.J.; Yu, Z.; Hirose, Y.; Pandian, G.N.; Bando, T.; Sugiyama, H. Inhibition of GLI-mediated transcription by cyclic pyrrole-imidazole polyamide in cancer stem cells. Bull. Chem. Soc. Jpn. 2022, 95, 693–699. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Khan, S.; Takagi, K.; Suzuki, N.; Teshima, K.; Terashima, C.; Fujishima, A. Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination. J. Colloid Interface Sci. 2021, 582, 1058–1066. [Google Scholar] [CrossRef]
- Yamashita, M. Next generation multifunctional nano-science of advanced metal complexes with quantum effect and nonlinearity. Bull. Chem. Soc. Jpn. 2021, 94, 209–264. [Google Scholar] [CrossRef]
- Wang, Z.; Maruyama, K.; Narita, F. A novel manufacturing method and structural design of functionally graded piezoelectric composites for energy-harvesting. Mater. Des. 2022, 214, 110371. [Google Scholar] [CrossRef]
- Maeda, K.; Takeiri, F.; Kobayashi, G.; Matsuishi, S.; Ogino, H.; Ida, S.; Mori, T.; Uchimoto, Y.; Tanabe, S.; Hasegawa, T.; et al. Recent progress on mixed-anion materials for energy applications. Bull. Chem. Soc. Jpn. 2022, 95, 26–37. [Google Scholar] [CrossRef]
- Sugimoto, Y.; Pou, P.; Abe, M.; Jelinek, P.; Pérez, R.; Morita, S.; Custance, Ó. Chemical identification of individual surface atoms by atomic force microscopy. Nature 2007, 446, 64–67. [Google Scholar] [CrossRef] [Green Version]
- Bacilla, A.C.C.; Okada, Y.; Yoshimoto, S.; Islyaikin, M.K.; Koifman, O.I.; Nagao Kobayashi, N. Triangular expanded hemiporphyrazines: Electronic structures and nanoscale characterization of their adlayers on Au(111). Bull. Chem. Soc. Jpn. 2021, 94, 34–43. [Google Scholar] [CrossRef]
- Kratish, Y.; Nakamuro, T.; Liu, Y.; Li, J.; Tomotsuka, I.; Harano, K.; Nakamura, E.; Marks, T.J. Synthesis and characterization of a well-defined carbon nanohorn-supported molybdenum dioxo catalyst by SMART-EM imaging. Surface structure at the atomic level. Bull. Chem. Soc. Jpn. 2021, 94, 427–432. [Google Scholar] [CrossRef]
- Kimura, K.; Miwa, K.; Imada, H.; Imai-Imada, M.; Kawahara, S.; Takeya, J.; Kawai, M.; Galperin, M.; Kim, Y. Selective triplet exciton formation in a single molecule. Nature 2019, 570, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, M.; Hada, M. IR Intensities of CO molecules adsorbed on atop and low-coordinate sites of Pd nanoparticles: Analysis using natural perturbation orbitals. Bull. Chem. Soc. Jpn. 2021, 94, 1789–1793. [Google Scholar] [CrossRef]
- Imada, H.; Imai-Imada, M.; Miwa, K.; Yamane, H.; Iwasa, T.; Tanaka, Y.; Toriumi, N.; Kimura, K.; Yokoshi, N.; Muranaka, A.; et al. Single-molecule laser nanospectroscopy with micro-electron volt energy resolution. Science 2021, 373, 95–98. [Google Scholar] [CrossRef]
- Sugimoto, Y.; Pou, P.; Custance, O.; Jelinek, P.; Abe, M.; Perez, R.; Morita, S. Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science 2008, 322, 413–417. [Google Scholar] [CrossRef]
- Ishida, Y. Manipulation of precise molecular arrangements and their photochemical properties on inorganic surfaces via multiple electrostatic interactions. Bull. Chem. Soc. Jpn. 2021, 94, 2886–2897. [Google Scholar] [CrossRef]
- Ishihara, H. Optical manipulation of nanoscale materials by linear and nonlinear resonant optical responses. Adv. Phys. X 2021, 6, 1885991. [Google Scholar] [CrossRef]
- Yamashita, Y.; Tsurumi, J.; Ohno, M.; Fujimoto, R.; Kumagai, S.; Kurosawa, T.; Okamoto, T.; Takeya, J.; Watanabe, S. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 2019, 572, 634–638. [Google Scholar] [CrossRef]
- Okamoto, T.; Yu, C.P.; Mitsui, C.; Yamagishi, M.; Ishii, H.; Takeya, J. Bent-shaped p-type small-molecule organic semiconductors: A molecular design strategy for next-generation practical applications. J. Am. Chem. Soc. 2020, 142, 9083–9096. [Google Scholar] [CrossRef]
- Hu, X.; Hu, R.; Wu, X.; Songsun, F.; Zhu, H.; Chen, J.; Chen, H. Self-assembled fabrication of water-soluble porphyrin mediated supramolecule-gold nanoparticle networks and their application in selective sensing. Bull. Chem. Soc. Jpn. 2021, 94, 2662–2669. [Google Scholar] [CrossRef]
- Ariga, K.; Ji, Q.; Nakanishi, W.; Hill, J.P.; Aono, M. Nanoarchitectonics: A new materials horizon for nanotechnology. Mater. Horiz. 2015, 2, 406–413. [Google Scholar] [CrossRef]
- Ariga, K. Nanoarchitectonics revolution and evolution: From small science to big technology. Small Sci. 2021, 1, 2000032. [Google Scholar] [CrossRef]
- Feynman, R.P. There’s plenty of room at the bottom. California Inst. Technol. J. Eng. Sci. 1960, 4, 23–36. [Google Scholar]
- Roukes, M. Plenty of room, indeed. Sci. Am. 2001, 285, 48–57. [Google Scholar] [CrossRef]
- Ariga, K.; Ji, Q.; Hill, J.P.; Bando, Y.; Aono, M. Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Mater. 2012, 4, e17. [Google Scholar] [CrossRef] [Green Version]
- Ariga, K. Nanoarchitectonics: What’s coming next after nanotechnology? Nanoscale Horiz. 2021, 6, 364–378. [Google Scholar] [CrossRef]
- Ariga, K.; Li, J.; Fei, J.; Ji, Q.; Hill, J.P. Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Adv. Mater. 2016, 28, 1251–1286. [Google Scholar] [CrossRef]
- Ariga, K.; Jia, X.; Song, J.; Hill, J.P.; Leong, D.T.; Jia, Y.; Li, J. Nanoarchitectonics beyond self-assembly: Challenges to create bio-like hierarchic organization. Angew. Chem. Int. Ed. 2020, 59, 15424–15446. [Google Scholar] [CrossRef]
- Ariga, K.; Nishikawa, M.; Mori, T.; Takeya, J.; Shrestha, L.K.; Jonathan, P.; Hill, J.P. Self-assembly as a key player for materials nanoarchitectonics. Sci. Technol. Adv. Mater. 2019, 20, 51–95. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Gupta, M.; Yamaguchi, D.; Gan, K.P.; Nakayama, M. Supramolecular association and nanostructure formation of liquid crystals and polymers for new functional materials. Bull. Chem. Soc. Jpn. 2021, 94, 357–376. [Google Scholar] [CrossRef]
- Harano, K. Self-assembly mechanism in nucleation processes of molecular crystalline materials. Bull. Chem. Soc. Jpn. 2021, 94, 463–472. [Google Scholar] [CrossRef]
- Kaneti, Y.V.; Guo, Y.; Septiani, N.L.W.; Iqbal, M.; Jiang, X.; Takei, T.; Yuliarto, B.; Alothman, Z.A.; Golberg, D.; Yamauchi, Y. Self-templated fabrication of hierarchical hollow manganese-cobalt phosphide yolk-shell spheres for enhanced oxygen evolution reaction. Chem. Eng. J. 2021, 405, 126580. [Google Scholar] [CrossRef]
- Pan, Z.-Z.; Lv, W.; Yang, Q.-H.; Nishihara, H. Aligned macroporous monoliths by ice-templating. Bull. Chem. Soc. Jpn. 2022, 95, 611–620. [Google Scholar] [CrossRef]
- Chen, G.; Sciortino, F.; Takeyasu, K.; Nakamura, J.; Hill, J.P.; Shrestha, L.K.; Ariga, K. Hollow spherical fullerene obtained by kinetically controlled liquid-liquid interfacial precipitation. Chem. Asian J. 2022, 17, e202200756. [Google Scholar] [CrossRef]
- Ariga, K.; Yamauchi, Y.; Mori, T.; Hill, J.P. 25th Anniversary article: What can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv. Mater. 2013, 25, 6477–6512. [Google Scholar] [CrossRef]
- Ariga, K. Don’t Forget Langmuir–Blodgett Films 2020: Interfacial Nanoarchitectonics with Molecules, Materials, and Living Objects. Langmuir 2020, 36, 7158–7180. [Google Scholar] [CrossRef]
- Kubo, A.; Era, M.; Narita, T.; Oishi, Y. Fabrication of flat and smooth, lead-based layered perovskite films at a transfer process of the Langmuir-Blodgett method. Bull. Chem. Soc. Jpn. 2021, 94, 2695–2697. [Google Scholar] [CrossRef]
- Rydzek, G.; Ji, Q.; Mao Li, M.; Schaaf, P.; Hill, J.P.; Boulmedais, F.; Ariga, K. Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future. Nano Today 2015, 10, 138–167. [Google Scholar] [CrossRef] [Green Version]
- Akashi, M.; Akagi, T. Composite materials by building block chemistry using weak Interaction. Bull. Chem. Soc. Jpn. 2021, 94, 1903–1921. [Google Scholar] [CrossRef]
- Ariga, K.; Lvov, Y.; Decher, G. There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices. Phys. Chem. Chem. Phys. 2022, 24, 4097–4115. [Google Scholar] [CrossRef]
- Ariga, K.; Vinu, A.; Ji, Q.; Ohmori, O.; Hill, J.P.; Acharya, S.; Koike, J.; Shiratori, S. A layered mesoporous carbon sensor based on nanopore-filling cooperative adsorption in the liquid phase. Angew. Chem. Int. Ed. 2008, 47, 7254–7257. [Google Scholar] [CrossRef]
- Ji, Q.; Honma, I.; Paek, S.-M.; Akada, M.; Hill, J.P.; Vinu, A.; Ariga, K. Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. Angew. Chem. Int. Ed. 2010, 49, 9737–9739. [Google Scholar] [CrossRef]
- Laughlin, R.B.; Pines, D. The theory of everything. Proc. Natl. Acad. Sci. USA 2000, 97, 28–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariga, K.; Fakhrullin, R. Materials nanoarchitectonics from atom to living cell: A method for everything. Bull. Chem. Soc. Jpn. 2022, 95, 774–795. [Google Scholar] [CrossRef]
- Govindaraju, T.; Avinash, M.B. Two-dimensional nanoarchitectonics: Organic and hybrid materials. Nanoscale 2012, 4, 6102–6117. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K.; Shionoya, M. Nanoarchitectonics for coordination asymmetry and related chemistry. Bull. Chem. Soc. Jpn. 2021, 94, 839–859. [Google Scholar] [CrossRef]
- Tirayaphanitchkul, C.; Imwiset, K.; Ogawa, M. Nanoarchitectonics through organic modification of oxide based layered materials; Concepts, methods and functions. Bull. Chem. Soc. Jpn. 2021, 94, 678–693. [Google Scholar] [CrossRef]
- Ariga, K.; Mori, T.; Kitao, T.; Uemura, T. Supramolecular chiral nanoarchitectonics. Adv. Mater. 2020, 32, 1905657. [Google Scholar] [CrossRef]
- Moon, S.; Yoon, B.Y.; Jackman, J.A. Effect of membrane curvature nanoarchitectonics on membrane-disruptive interactions of antimicrobial lipids and surfactants. Langmuir 2022, 38, 4606–4616. [Google Scholar] [CrossRef]
- Cao, L.; Huang, Y.; Parakhonskiy, B.; Skirtach, A.G. Nanoarchitectonics beyond perfect order—Not quite perfect but quite useful. Nanoscale 2022, 14, 15964–16002. [Google Scholar] [CrossRef]
- Hecht, S. Welding, organizing, and planting organic molecules on substrate surfaces—Promising approaches towards nanoarchitectonics from the bottom up. Angew. Chem. Int. Ed. 2003, 42, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.; Unayama, S.; Tai, S.; Tsuruoka, T.; Waser, R.; Aono, M.; Valov, I.; Hasegawa, T. Nanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots. Adv. Mater. 2018, 30, 1703261. [Google Scholar] [CrossRef] [PubMed]
- Mahdaoui, D.; Hirata, C.; Nagaoka, K.; Miyazawa, K.; Fujii, K.; Ando, T.; Matsushita, Y.; Abderrabba, M.; Ito, O.; Tsukagoshi, K.; et al. Nanoarchitectonics of C70 hexagonal nanosheets: Synthesis and charge transport properties. Diam. Relat. Mater. 2022, 128, 109217. [Google Scholar] [CrossRef]
- Rozhina, E.; Ishmukhametov, I.; Batasheva, S.; Akhatova, F.; Fakhrullin, R. Nanoarchitectonics meets cell surface engineering: Shape recognition of human cells by halloysite-doped silica cell imprints. Beilstein J. Nanotechnol. 2019, 10, 1818–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Y.; Yan, X.; Li, J. Schiff base mediated dipeptide assembly toward nanoarchitectonics. Angew. Chem. Int. Ed. 2022, 61, e202207752. [Google Scholar] [CrossRef]
- Shen, X.; Song, J.; Sevencan, C.; Leong, D.T.; Ariga, K. Bio-interactive nanoarchitectonics with two-dimensional materials and environments. Sci. Technol. Adv. Mater. 2022, 23, 199–224. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Mondol, M.M.H.; Jhung, S.H. Enhanced oxidative desulfurization of liquid model fuel under microwave irradiation over W2N@C catalyst nanoarchitectonics. Chem. Eng. J. 2022, 440, 135841. [Google Scholar] [CrossRef]
- Kumari, N.; Chhabra, T.; Kumar, S.; Krishnan, V. Nanoarchitectonics of sulfonated biochar from pine needles as catalyst for conversion of biomass derived chemicals to value added products. Catal. Commun. 2022, 168, 106467. [Google Scholar] [CrossRef]
- Kim, M.; Firestein, K.L.; Fernando, J.F.S.; Xu, X.; Lim, H.; Golberg, D.V.; Na, J.; Kim, J.; Nara, H.; Tang, J.; et al. Strategic design of Fe and N co-doped hierarchically porous carbon as superior ORR catalyst: From the perspective of nanoarchitectonics. Chem. Sci. 2022, 13, 10836–10845. [Google Scholar] [CrossRef]
- Ishihara, S.; Labuta, J.; Van Rossom, W.; Ishikawa, D.; Minami, K.; Hill, J.P.; Ariga, K. Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Phys. Chem. Chem. Phys. 2014, 16, 9713–9746. [Google Scholar] [CrossRef]
- Pandeeswar, M.; Senanayak, S.P.; Govindaraju, T. Nanoarchitectonics of small molecule and DNA for ultrasensitive detection of mercury. ACS Appl. Mater. Interfaces 2016, 8, 30362–30371. [Google Scholar] [CrossRef] [PubMed]
- Komiyama, M.; Mori, T.; Ariga, K. Molecular imprinting: Materials nanoarchitectonics with molecular information. Bull. Chem. Soc. Jpn. 2018, 91, 1075–1111. [Google Scholar] [CrossRef]
- Ariga, K.; Ji, Q.; Mori, T.; Naito, M.; Yamauchi, Y.; Abe, H.; Hill, J.P. Enzyme nanoarchitectonics: Organization and device application. Chem. Soc. Rev. 2013, 42, 6322–6345. [Google Scholar] [CrossRef] [PubMed]
- Giussi, J.M.; Cortez, M.L.; Marmisollé, W.A.; Azzaroni, O. Practical use of polymer brushes in sustainable energy applications: Interfacial nanoarchitectonics for high-efficiency devices. Chem. Soc. Rev. 2019, 48, 814–849. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, T.; Nakayama, T.; Ariga, K. Nanoarchitectonics intelligence with atomic switch and neuromorphic network system. Appl. Phys. Express 2022, 15, 100101. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.H.; Ariga, K. Redox-active polymers for energy storage nanoarchitectonics. Joule 2017, 1, 739–768. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Xu, H.; Zhang, H.; Xia, X.; Ji, K.; Szymsa, A.; Matras-Postolek, K.; Ping Yang, P. Dimensional nanoarchitectonics of g-C3N4/Co nanocomposites for photo- and electro-chemical applications. ACS Appl. Nano Mater. 2022, 5, 11731–11740. [Google Scholar] [CrossRef]
- Chen, G.; Singh, S.K.; Takeyasu, K.; Hill, J.P.; Nakamura, J.; Ariga, K. Versatile nanoarchitectonics of Pt with morphology control of oxygen reduction reaction catalysts. Sci. Technol. Adv. Mater. 2022, 23, 413–423. [Google Scholar] [CrossRef]
- Pham, T.-A.; Qamar, A.; Dinh, T.; Masud, M.K.; Rais-Zadeh, M.; Senesky, D.G.; Yamauchi, Y.; Nguyen, N.-T.; Phan, H.-P. Nanoarchitectonics for wide bandgap semiconductor nanowires: Toward the next generation of nanoelectromechanical systems for environmental monitoring. Adv. Sci. 2020, 7, 2001294. [Google Scholar] [CrossRef]
- Boukhalfa, N.; Darder, M.; Boutahala, M.; Aranda, P.; Ruiz-Hitzky, E. Composite nanoarchitectonics: Alginate beads encapsulating Sepiolite/magnetite/Prussian blue for removal of cesium ions from water. Bull. Chem. Soc. Jpn. 2021, 94, 122–132. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Zhu, Y.; Shi, R.; Wang, D.; Yang, P. Interface nanoarchitectonics of TiO2/g-C3N4 2D/2D Heterostructures for enhanced antibiotic degradation and Cr(VI) reduction. Langmuir 2022, 38, 11068–11079. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Kim, J.; Hsieh, P.-H.; Hsu, Y.-S.; Kaneti, Y.V.; Shieh, F.-K.; Yamauchi, Y.; Wu, K.C.-W. Nanoarchitectonics of biofunctionalized metal–organic frameworks with biological macromolecules and living cells. Small Methods 2019, 3, 1900213. [Google Scholar] [CrossRef]
- Ferhan, A.R.; Park, S.; Park, H.; Tae, H.; Jackman, J.A.; Cho, N.-J. Lipid nanoparticle technologies for nucleic acid delivery: A nanoarchitectonics perspective. Adv. Funct. Mater. 2022, 32, 2203669. [Google Scholar] [CrossRef]
- Hu, W.; Shi, J.; Lv, W.; Jia, J.; Ariga, K. Regulation of stem cell fate and function by using bioactive materials with nanoarchitectonics for regenerative medicine. Sci. Technol. Adv. Mater. 2022, 23, 393–412. [Google Scholar] [CrossRef]
- Akai, R.; Oka, K.; Nishida, R.; Tohnai, N. Controlling the movability and excimer formation of functional organic molecules. Bull. Chem. Soc. Jpn. 2022, 95, 1111–1116. [Google Scholar] [CrossRef]
- Harada, A.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H. Supramolecular polymers and materials formed by host-guest interactions. Bull. Chem. Soc. Jpn. 2021, 94, 2381–2389. [Google Scholar] [CrossRef]
- Hamada, K.; Shimoyama, D.; Hirao, T.; Haino, T. Chiral supramolecular polymer formed via host-guest complexation of an octaphosphonate biscavitand and a chiral diammonium guest. Bull. Chem. Soc. Jpn. 2022, 95, 621–627. [Google Scholar] [CrossRef]
- Hosono, N.; Uemura, T. Development of functional materials via polymer encapsulation into metal-organic frameworks. Bull. Chem. Soc. Jpn. 2021, 94, 2139–2148. [Google Scholar] [CrossRef]
- Miyasaka, H. Charge manipulation in metal-organic frameworks: Toward designer functional molecular materials. Bull. Chem. Soc. Jpn. 2021, 94, 2929–2955. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, D.; Ubukata, T.; Seki, T. Unconventional approaches to light-promoted dynamic surface morphing on polymer films. Bull. Chem. Soc. Jpn. 2022, 95, 138–162. [Google Scholar] [CrossRef]
- Kawai, S.; Krejčí, O.; Nishiuchi, T.; Sahara, K.; Kodama, T.; Pawlak, R.; Meyer, E.; Kubo, T.; Foster, A.S. Three-dimensional graphene nanoribbons as a framework for molecular assembly and local probe chemistry. Sci. Adv. 2020, 6, eaay8913. [Google Scholar] [CrossRef] [PubMed]
- Kawai, S.; Sang, H.; Kantorovich, L.; Takahashi, K.; Nozaki, K.; Ito, S. An endergonic synthesis of single Sondheimer–Wongdiyne by local probe chemistry. Angew. Chem. Int. Ed. 2020, 59, 10842–10847. [Google Scholar] [CrossRef] [PubMed]
- Ruffieux, P.; Wang, S.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C.A.; Passerone, D.; et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Kinikar, A.; Giovannantonio, M.D.; Ruffieux, P.; Müllen, K.; Fasel, R.; Narita, A. On-surface synthesis of dibenzohexacenohexacene and dibenzopentaphenoheptaphene. Bull. Chem. Soc. Jpn. 2021, 94, 997–999. [Google Scholar] [CrossRef]
- Ariga, K. Atomic and organic nanoarchitectonics. Trends Chem. 2020, 2, 779–782. [Google Scholar] [CrossRef]
- Feringa, B.L. The art of building small: From molecular switches to motors (Nobel lecture). Angew. Chem. Int. Ed. 2017, 56, 11060–11078. [Google Scholar] [CrossRef] [Green Version]
- Sauvage, J.-P. From chemical topology to molecular machines (Nobel lecture). Angew. Chem. Int. Ed. 2017, 56, 11080–11093. [Google Scholar] [CrossRef] [Green Version]
- Stoddart, J.F. Mechanically interlocked molecules (MIMs)—Molecular shuttles, switches, and machines (Nobel lecture). Angew. Chem. Int. Ed. 2017, 56, 11094–11125. [Google Scholar] [CrossRef]
- Soe, W.-H.; Srivastava, S.; Joachim, C. Train of single molecule-gears. J. Phys. Chem. Lett. 2019, 10, 6462–6467. [Google Scholar] [CrossRef]
- Lin, H.-H.; Croy, A.; Gutierrez, R.; Joachim, C.; Cuniberti, G. Mechanical transmission of rotational motion between molecular-scale gears. Phys. Rev. Appl. 2020, 13, 034024. [Google Scholar] [CrossRef] [Green Version]
- Aono, M.; Ariga, K. The way to nanoarchitectonics and the way of nanoarchitectonics. Adv. Mater. 2016, 28, 989–992. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.-F.; Shirai, Y.; Tour, J.M. En route to a motorized nanocar. Org. Lett. 2006, 8, 1713–1716. [Google Scholar] [CrossRef] [PubMed]
- Rapenne, G.; Joachim, C. The first nanocar race. Nat. Rev. Mater. 2017, 2, 17040. [Google Scholar] [CrossRef]
- Jacquot de Rouville, H.-P.; Kammerer, C.; Rapenne, G. From the synthesis of nanovehicles to participation in the first nanocar race—View from the French team. Molecules 2018, 23, 612. [Google Scholar] [CrossRef] [Green Version]
- Ariga, K. Materials nanoarchitectonics in a two-dimensional world within a nanoscale distance from the liquid phase. Nanoscale 2022, 14, 10610–10629. [Google Scholar] [CrossRef]
- Ariga, K. Liquid interfacial nanoarchitectonics: Molecular machines, organic semiconductors, nanocarbons, stem cells, and others. Curr. Opin. Colloid Interface Sci. 2022, 63, 101656. [Google Scholar] [CrossRef]
- Palagi, S.; Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 2018, 3, 113–124. [Google Scholar] [CrossRef]
- Soto, F.; Karshalev, E.; Zhang, F.; Fernandez de Avila, B.E.; Nourhani, A.; Wang, J. Smart materials for microrobots. Chem. Rev. 2022, 122, 5365–5403. [Google Scholar] [CrossRef]
- Balzani, V.; Credi, A.; Raymo, F.; Stoddart, J. Artificial molecular machines. Angew. Chem. Int. Ed. 2000, 39, 3348–3391. [Google Scholar] [CrossRef]
- Mondal, A.; Toyoda, R.; Costil, R.; Feringa, B.I. Chemically driven rotatory molecular machines. Angew. Chem. Int. Ed. 2022, 61, e202206631. [Google Scholar] [CrossRef]
- Oliveira, O.N., Jr.; Caseli, L.; Ariga, K. The past and the future of Langmuir and Langmuir–Blodgett films. Chem. Rev. 2022, 122, 6459–6513. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K. Langmuir–Blodgett nanoarchitectonics, out of the box. Acc. Mater. Res. 2022, 3, 404–410. [Google Scholar] [CrossRef]
- Tokunaga, K.; Odate, F.; Asami, D.; Tahara, K.; Sato, M. A theoretical procedure based on classical electrostatics and density functional theory for screening non-square-shaped mixed-valence complexes for logic gates in molecular quantum-dot cellular automata. Bull. Chem. Soc. Jpn. 2021, 94, 397–403. [Google Scholar] [CrossRef]
- Sluysmans, D.; Zhang, L.; Li, X.; Garci, A.; Stoddart, J.F.; Duwez, A.-S. Viologen tweezers to probe the force of individual donor-acceptor π-interactions. J. Am. Chem. Soc. 2020, 142, 21153–21159. [Google Scholar] [CrossRef]
- Qu, K.; Duan, P.; Wang, J.-Y.; Zhang, B.; Zhang, Q.-C.; Hong, W.; Chen, Z.-N. Capturing the rotation of one molecular crank by single-molecule conductance. Nano Lett. 2021, 21, 9729–9735. [Google Scholar] [CrossRef]
- Ikeda, A.; Shinkai, S. Novel cavity design using calix[n]arene skeletons: Toward molecular recognition and metal binding. Chem. Rev. 1997, 97, 1713–1734. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Lyu, X.; Tang, W.; Wu, H.; Minami, T. Polythiophene-based chemical sensors: Toward on-site supramolecular analytical devices. Bull. Chem. Soc. Jpn. 2021, 94, 2613–2622. [Google Scholar] [CrossRef]
- Ishihara, K.; Fukazawa, K. Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition. J. Mater. Chem. B 2022, 10, 3397–3419. [Google Scholar] [CrossRef]
- Kumar, V. Urea/thiourea based optical sensors for toxic analytes: A convenient path for detection of first nerve agent (Tabun). Bull. Chem. Soc. Jpn. 2021, 94, 309–326. [Google Scholar] [CrossRef]
- Suzuki, S.; Homma, A.; Nishi, R.; Mizuno, H.; Kawauchi, S.; Fukuhara, G. A dynamically responsive chemosensor that can be modulated by an effector: Amplification sensing by positive heterotropic allosterism. Bull. Chem. Soc. Jpn. 2022, 95, 1183–1189. [Google Scholar] [CrossRef]
- Li, A.; Tan, Z.; Hu, Y.; Lu, Z.; Yuan, J.; Li, X.; Xie, J.; Zhang, J.; Zhu, K. Precise control of radial catenane synthesis via clipping and pumping. J. Am. Chem. Soc. 2022, 144, 2085–2089. [Google Scholar] [CrossRef] [PubMed]
- Grill, K.; Dube, H. Supramolecular relay-control of organocatalysis with a hemithioindigo-based molecular motor. J. Am. Chem. Soc. 2020, 142, 19300–19307. [Google Scholar] [CrossRef]
- Yamamoto, T.; Takahashi, T.; Murakami, R.; Ariki, N.; Suginome, M. Dynamic helical polyquinoxalines bearing 4-aminopyridyl groups as chiral nucleophilic catalysts. Bull. Chem. Soc. Jpn. 2021, 94, 943–949. [Google Scholar] [CrossRef]
- Echavarren, J.; Gall, M.A.Y.; Haertsch, A.; Leigh, D.A.; Spence, J.T.J.; Tetlow, D.J.; Tian, C. Sequence-selective decapeptide synthesis by the parallel operation of two artificial molecular machines. J. Am. Chem. Soc. 2021, 143, 5158–5165. [Google Scholar] [CrossRef] [PubMed]
- Nakama, T.; Takezawa, Y.; Sasaki, D.; Shionoya, M. Allosteric regulation of DNAzyme activities through intrastrand transformation induced by Cu(II)-mediated artificial base pairing. J. Am. Chem. Soc. 2020, 142, 10153–10162. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.G.; Sadeghi-Kelishadi, A.; Langton, M.J. A photo-responsive transmembrane anion transporter relay. J. Am. Chem. Soc. 2022, 144, 10455–10461. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yamada, T.; Kimizuka, N. Supramolecular thermocells based on thermo-responsiveness of host-guest chemistry. Bull. Chem. Soc. Jpn. 2021, 94, 1525–1546. [Google Scholar] [CrossRef]
- Hayashi, S. Elastic molecular crystals: Their deformation-induced reversible unit cell changes with specific Poisson effect. Bull. Chem. Soc. Jpn. 2022, 95, 721–727. [Google Scholar] [CrossRef]
- Yashima, E.; Maeda, K. Helical polymers with dynamic and static macromolecular helicity memory: The power of helicity memory for helical polymer synthesis and applications. Bull. Chem. Soc. Jpn. 2021, 94, 2637–2661. [Google Scholar] [CrossRef]
- Inaba, H.; Matsuura, K. Modulation of microtubule properties and functions by encapsulation of nanomaterials using a Tau-derived peptide. Bull. Chem. Soc. Jpn. 2021, 94, 2100–2112. [Google Scholar] [CrossRef]
- Jia, Y.; Dong, W.; Feng, X.; Li, J.; Li, J. A self-powered kinesin-microtubule system for smart cargo delivery. Nanoscale 2015, 7, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhu, J.; Kong, W.; Möhwald, H.; Li, J. Different microtubule structures assembled by kinesin motors. Langmuir 2018, 34, 9768–9773. [Google Scholar] [CrossRef]
- Hong, F.; Zhang, F.; Liu, Y.; Yan, H. DNA origami: Scaffolds for creating higher order structures. Chem. Rev. 2017, 117, 12584–12640. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, A.; Endo, M.; Sugiyama, H. Single-Molecule Analysis Using DNA Origami. Angew. Chem. Int. Ed. 2012, 51, 874–890. [Google Scholar] [CrossRef] [PubMed]
- Endo, M.; Sugiyama, H. DNA origami nanomachines. Molecules 2018, 23, 1766. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.Y.; Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 2011, 3, 103–113. [Google Scholar] [CrossRef]
- Liang, X.; Chen, H.; Li, L.; An, R.; Komiyama, M. Ring-structured DNA and RNA as key players in vivo and in vitro. Bull. Chem. Soc. Jpn. 2021, 94, 141–157. [Google Scholar] [CrossRef]
- Liang, X.; Liu, M.; Komiyama, M. Recognition of target site in various forms of DNA and RNA by peptide nucleic acid (PNA): From fundamentals to practical applications. Bull. Chem. Soc. Jpn. 2021, 94, 1737–1756. [Google Scholar] [CrossRef]
- Howorka, S. DNA nanoarchitectonics: Assembled DNA at interfaces. Langmuir 2013, 29, 7344–7353. [Google Scholar] [CrossRef]
- Komiyama, M.; Yoshimoto, K.; Sisido, M.; Ariga, K. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull. Chem. Soc. Jpn. 2017, 90, 967–1004. [Google Scholar] [CrossRef] [Green Version]
- Podder, A.; Lee, H.J.; Kim, B.H. Fluorescent nucleic acid systems for biosensors. Bull. Chem. Soc. Jpn. 2021, 94, 1010–1035. [Google Scholar] [CrossRef]
- Lee, G.; Kageyama, Y.; Takeda, S. Site-selective spin-probe with a photocleavable macrocyclic linker for measuring the dynamics of water surrounding a liposomal assembly. Bull. Chem. Soc. Jpn. 2022, 95, 909–921. [Google Scholar] [CrossRef]
- Neal, E.A.; Nakanish, T. Alkyl-fullerene materials of tunable morphology and function. Bull. Chem. Soc. Jpn. 2021, 94, 1769–1788. [Google Scholar] [CrossRef]
- López-Salas, N.; Antonietti, M. Carbonaceous materials: The beauty of simplicity. Bull. Chem. Soc. Jpn. 2021, 94, 2822–2828. [Google Scholar] [CrossRef]
- Islam, M.S.; Shudo, Y.; Hayami, S. Energy conversion and storage in fuel cells and super-capacitors from chemical modifications of carbon allotropes: State-of-art and prospect. Bull. Chem. Soc. Jpn. 2022, 95, 1–25. [Google Scholar] [CrossRef]
- Su, C.H.; Soendoro, A.; Okayama, S.; Rahmania, F.J.; Nagai, T.; Imae, T.; Tsutsumiuchi, K.; Kawai, N. Drug release stimulated by magnetic field and light on magnetiteand carbon dot-loaded carbon nanohorn. Bull. Chem. Soc. Jpn. 2022, 95, 582–594. [Google Scholar] [CrossRef]
- Ceylan, H.; Yasa, I.C.; Yasa, O.; Tabak, A.F.; Giltinan, F.; Sitti, M. 3D-Printed biodegradable microswimmer for fheranostic cargo delivery and release. ACS Nano 2019, 13, 3353–3362. [Google Scholar] [CrossRef] [Green Version]
- Kochergin, Y.S.; Villa, K.; Nemeškalová, A.; Kuchař, M.; Pumera, M. Hybrid inorganic–organic visible-light-driven microrobots based on donor–acceptor organic polymer for degradation of toxic psychoactive substances. ACS Nano 2021, 15, 18458–18468. [Google Scholar] [CrossRef]
- Beladi-Mousavi, S.M.; Hermanová, S.; Ying, Y.; Plutnar, J.; Pumera, M. A maze in plastic wastes: Autonomous motile photocatalytic microrobots against microplastics. ACS Appl. Mater. Interfaces 2021, 13, 25102–25110. [Google Scholar] [CrossRef]
- Peng, X.; Urso, M.; Ussia, M.; Pumera, M. Shape-controlled self-assembly of light-powered microrobots into ordered microchains for cells transport and water remediation. ACS Nano 2022, 16, 7615–7625. [Google Scholar] [CrossRef]
- Pacheco, M.; Mayorga-Martinez, C.C.; Escarpa, A.; Pumera, M. Micellar polymer magnetic microrobots as efficient nerve agent microcleaners. ACS Appl. Mater. Interfaces 2022, 14, 26128–26134. [Google Scholar] [CrossRef] [PubMed]
- Xin, C.; Jin, D.; Hu, Y.; Yang, L.; Li, R.; Wang, L.; Ren, Z.; Wang, D.; Ji, S.; Hu, K.; et al. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. ACS Nano 2021, 15, 18048–18059. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K. Molecular recognition at the air–water interface: Nanoarchitectonic design and physicochemical understanding. Phys. Chem. Chem. Phys. 2020, 22, 24856–24869. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, K.; Ohto, K.; Tanaka, Y.; Aoyama, Y.; Kunitake, T. Binding of sugars and water-soluble polymers to a monolayer of cyclic resorcinol tetramer at the air-water interface. Thin Solid Film. 1989, 179, 21–26. [Google Scholar] [CrossRef]
- Ariga, K.; Kunitake, T. Molecular recognition at air–water and related interfaces: Complementary hydrogen bonding and multisite interaction. Acc. Chem. Res. 1998, 31, 371–378. [Google Scholar] [CrossRef]
- Ariga, K.; Ito, H.; Hill, J.P.; Tsukube, H. Molecular recognition: From solution science to nano/materials technology. Chem. Soc. Rev. 2012, 41, 5800–5835. [Google Scholar] [CrossRef]
- Ariga, K.; Mori, T.; Hill, J.P. Mechanical control of nanomaterials and nanosystems. Adv. Mater. 2012, 24, 158–176. [Google Scholar] [CrossRef]
- Ariga, K. Mechano-nanoarchitectonics: Design and function. Small Methods 2022, 6, 2101577. [Google Scholar] [CrossRef]
- Ariga, K.; Minami, K.; Ebara, M.; Nakanishi, J. What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. Polym. J. 2016, 48, 371–389. [Google Scholar] [CrossRef]
- Ariga, K.; Terasaka, Y.; Sakai, D.; Tsuji, H.; Kikuchi, J. Piezoluminescence based on molecular recognition by dynamic cavity array of steroid cyclophanes at the air-water interface. J. Am. Chem. Soc. 2000, 122, 7835–7836. [Google Scholar] [CrossRef]
- Ariga, K.; Nakanishi, T.; Terasaka, Y.; Tsuji, H.; Sakai, D.; Kikuchi, J. Piezoluminescence at the air-water interface through dynamic molecular recognition driven by lateral pressure application. Langmuir 2005, 21, 976–981. [Google Scholar] [CrossRef]
- Michinobu, T.; Shinoda, S.; Nakanishi, T.; Hill, J.P.; Fujii, K.; Player, T.N.; Tsukube, H.; Ariga, K. Mechanical control of enantioselectivity of amino acid recognition by cholesterol-armed cyclen monolayer at the air-water interface. J. Am. Chem. Soc. 2006, 128, 14478–14479. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Okamoto, K.; Endo, H.; Hill, J.P.; Shinoda, S.; Matsukura, M.; Tsukube, H.; Suzuki, Y.; Kanekiyo, Y.; Ariga, K. Mechanical tuning of molecular recognition to discriminate the single-methyl-group difference between thymine and uracil. J. Am. Chem. Soc. 2010, 132, 12868–12870. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K. The evolution of molecular machines through interfacial nanoarchitectonics: From toys to tools. Chem. Sci. 2020, 11, 10594–10604. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K. Nanoarchitectonics for analytical science at interfaces and with supramolecular nanostructures. Anal. Sci. 2021, 37, 1331–1348. [Google Scholar] [CrossRef] [PubMed]
- Lehn, J.M. Supramolecular chemistry—Scope and perspectives molecules, supermolecules, and molecular devices (Nobel lecture). Angew. Chem. Int. Ed. Engl. 1988, 27, 89–112. [Google Scholar] [CrossRef]
- Cram, D.J. The Design of molecular hosts, guests, and their complexes (Nobel lecture). Angew. Chem. Int. Ed. Engl. 1988, 27, 1009–1020. [Google Scholar] [CrossRef]
- Pedersen, C.J. The discovery of crown ethers (Noble lecture). Angew. Chem. Int. Ed. Engl. 1988, 27, 1021–1027. [Google Scholar] [CrossRef]
- Shinkai, S.; Ogawa, T.; Nakaji, T.; Kusano, Y.; Nanabe, O. Photocontrolled extraction ability of azobenzene-bridged azacrown ether. Tetrahedron Lett. 1979, 20, 4569–4572. [Google Scholar] [CrossRef]
- Shinkai, S. “Dynamic” molecular recognition and chirality segregation utilizing concepts of molecular machines and molecular assemblies. Proc. Jpn. Acad. Ser. B 2019, 95, 590–601. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.I.; Sivak, D.A. Theory of nonequilibrium free energy transduction by molecular machines. Chem. Rev. 2020, 120, 434–459. [Google Scholar] [CrossRef] [PubMed]
- Nicoli, F.; Paltrinieri, E.; Bakić, M.T.; Baroncini, M.; Silvi, S.; Credi, A. Binary logic operations with artificial molecular machines. Coord. Chem. Rev. 2021, 428, 213589. [Google Scholar] [CrossRef]
- Ariga, K. Molecular tuning nanoarchitectonics for molecular recognition and molecular manipulation. ChemNanoMat 2020, 6, 870–880. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, D.; Mori, T.; Yonamine, Y.; Nakanishi, W.; Cheung, D.L.; Hill, J.P.; Ariga, K. Mechanochemical tuning of the binaphthyl conformation at the air–water interface. Angew. Chem. Int. Ed. 2015, 54, 8988–8991. [Google Scholar] [CrossRef]
- Mori, T.; Ishikawa, D.; Yonamine, Y.; Fujii, Y.; Hill, J.P.; Ichinose, I.; Ariga, K.; Nakanishi, W. Mechanically induced opening–cosing action of binaphthyl molecular pliers: Digital phase transition versus continuous conformational change. ChemPhysChem 2017, 18, 1470–1474. [Google Scholar] [CrossRef] [Green Version]
- Nitoń, P.; Żywociński, A.; Fiałkowski, M.; Hołyst, R. A “nano-windmill” driven by a flux of water vapour: A comparison to the rotating ATPase. Nanoscale 2013, 5, 9732–9738. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Štacko, P.; Rudolf, P.; Gengler, R.Y.N.; Feringa, B.I. Bidirectional photomodulation of surface tension in Langmuir films. Angew. Chem. Int. Ed. 2017, 56, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.; Komatsu, H.; Sakamoto, N.; Suzuki, K.; Hill, J.P.; Matsumoto, M.; Sakai, H.; Ariga, K.; Nakanishi, W. Molecular rotors confined at an ordered 2D interface. Phys. Chem. Chem. Phys. 2018, 20, 3073–3078. [Google Scholar] [CrossRef]
- Mori, T.; Chin, H.; Kawashima, K.; Thien Ngo, H.T.; Cho, N.-J.; Nakanishi, W.; Hill, J.P.; Ariga, K. Dynamic control of intramolecular rotation by tuning the surrounding two-dimensional matrix field. ACS Nano 2019, 13, 2410–2419. [Google Scholar] [CrossRef]
- Suga, K.; Yamakado, T.; Saito, S. Nitrogen-substitution in the flapping wings of cyclooctatetraene-fused molecules. Bull. Chem. Soc. Jpn. 2021, 94, 1999–2002. [Google Scholar] [CrossRef]
- Yamakado, T.; Saito, S. Ratiometric flapping force probe that works in polymer gels. J. Am. Chem. Soc. 2022, 144, 2804–2815. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, W.; Saito, S.; Sakamoto, N.; Kashiwagi, A.; Yamaguchi, S.; Sakai, H.; Ariga, K. Monitoring fluorescence response of amphiphilic flapping molecules in compressed monolayers at the air–water interface. Chem. Asian J. 2019, 14, 2869–2876. [Google Scholar] [CrossRef]
- Soe, W.-H.; Shirai, Y.; Durand, C.; Yonamine, Y.; Minami, K.; Bouju, X.; Kolmer, M.; Ariga, K.; Joachim, C.; Nakanishi, W. Conformation manipulation and motion of a double paddle molecule on an Au(111) surface. ACS Nano 2017, 11, 10357–10365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, M.; Mori, T.; Nakanishi, W.; Hill, J.P.; Sakai, H.; Ariga, K. Helicity manipulation of a double-paddled binaphthyl in a two-dimensional matrix field at the air–water interface. ACS Nano 2020, 14, 13294–13303. [Google Scholar] [CrossRef] [PubMed]
- Ishii, M.; Mori, T.; Nakanishi, W.; Hill, J.P.; Sakai, H.; Ariga, K. Mechanical tuning of aggregated states for conformation control of cyclized binaphthyl at the air–water interface. Langmuir 2022, 38, 6481–6490. [Google Scholar] [CrossRef]
- Krishnan, V.; Kasuya, Y.; Ji, Q.; Sathish, M.; Shrestha, L.K.; Ishihara, S.; Minami, K.; Morita, H.; Yamazaki, T.; Hanagata, N.; et al. Vortex-aligned fullerene nanowhiskers as a scaffold for orienting cell growth. ACS Appl. Mater. Interfaces 2015, 7, 15667–15673. [Google Scholar] [CrossRef]
- Mori, T.; Tanaka, H.; Dalui, A.; Mitoma, N.; Suzuki, K.; Matsumoto, M.; Aggarwal, N.; Patnaik, A.; Acharya, S.; Shrestha, L.K.; et al. Carbon nanosheets by morphology-retained carbonization of two-dimensional assembled anisotropic carbon nanorings. Angew. Chem. Int. Ed. 2018, 57, 9679–9683. [Google Scholar] [CrossRef]
- Maeda, T.; Mori, T.; Ikeshita, M.; Ma, S.C.; Muller, G.; Ariga, K.; Naota, T. Vortex flow-controlled circularly polarized luminescence of achiral Pt(II) complex aggregates assembled at the air-water interface. Small Methods 2022, 6, 2200936. [Google Scholar] [CrossRef]
- Adachi, J.; Mori, T.; Inoue, R.; Naito, M.; Le, N.H.-T.; Kawamorita, S.; Hill, J.P.; Naota, T.; Ariga, K. Emission control by molecular manipulation of double-paddled binuclear PtII complexes at the air-water interface. Chem. Asian J. 2020, 15, 406–414. [Google Scholar] [CrossRef]
- Adachi, J.; Naito, M.; Sugiura, S.; Le, N.H.-T.; Nishimura, S.; Huang, S.; Suzuki, S.; Kawamorita, S.; Komiya, N.; Hill, J.P.; et al. Coordination amphiphile: Design of planar-coordinated platinum complexes for monolayer formation at an air-water interface based on ligand characteristics and molecular topology. Bull. Chem. Soc. Jpn. 2022, 95, 889–897. [Google Scholar] [CrossRef]
- Wang, X.; Lin, D.; Zhou, Y.; Jiao, N.; Tung, S.; Liu, L. Multistimuli-responsive hydroplaning superhydrophobic microrobots with programmable motion and multifunctional applications. ACS Nano 2022, 16, 14895–14906. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Doshi, N.; Goldberg, B.; Wang, H.; Wood, R.J. Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot. Nat. Commun. 2018, 9, 2495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Wang, L.; Li, Q.; Rong, W.; Sun, L.; Yang, L. Design, analysis and experiments of a magnetic microrobot capable of locomotion and manipulation at water surfaces. J. Micromechanics Microengineering 2019, 29, 025010. [Google Scholar] [CrossRef]
- Wang, X.; Dai, L.; Jiao, N.; Tung, S.; Liu, L. Superhydrophobic photothermal graphene composites and their functional applications in microrobots swimming at the air/water interface. Chem. Eng. J. 2021, 422, 129394. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Zheng, X.; Yu, Z.; Lv, W.; Sheng, M.; Wang, L.; Nie, P.; Li, H.; Guan, D.; et al. Multimodal bubble microrobot near an air–water interface. Small 2022, 18, 2203872. [Google Scholar] [CrossRef]
- He, Y.; Wang, L.; Zhao, M.; Fan, Z.; Rong, W.; Sun, L. Flexible magnetic micropartners for micromanipulation at interfaces. ACS Appl. Mater. Interfaces 2022, 14, 22570–22581. [Google Scholar] [CrossRef]
- Bryan, M.T.; Garcia-Torres, J.; Martin, E.L.; Hamilton, J.K.; Calero, C.; Petrov, P.G.; Winlove, C.P.; Pagonabarraga, I.; Tierno, P.; Sagués, F.; et al. Microscale magneto-elastic composite swimmers at the air-water and water-solid interfaces under a uniaxial field. Phys. Rev. Appl. 2019, 11, 044019. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jiang, Y.; Wu, H.; Yang, Y. Floating robotic insects to obtain electric energy from water surface for realizing some self-powered functions. Nano Energy 2019, 63, 103810. [Google Scholar] [CrossRef]
- Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365. [Google Scholar] [CrossRef]
- Yoshino, A. The lithium-ion battery: Two breakthroughs in development and two reasons for the Nobel prize. Bull. Chem. Soc. Jpn. 2022, 95, 195–197. [Google Scholar] [CrossRef]
- Hosaka, T.; Komaba, S. Development of nonaqueous electrolytes for high-voltage K-ion batteries. Bull. Chem. Soc. Jpn. 2022, 95, 569–581. [Google Scholar] [CrossRef]
- Fukushima, T.; Kitano, S.; Hata, S.; Yamauchi, M. Carbon-neutral energy cycles using alcohols. Sci. Technol. Adv. Mater. 2018, 19, 142–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, G.; Lee, J.M.; Kothandam, G.; Palanisami, T.; Al-Muhtaseb, A.H.; Karakoti, A.; Yi, J.; Bolan, N.; Vinu, A. A review on the synthesis and applications of nanoporous carbons for the removal of complex chemical contaminants. Bull. Chem. Soc. Jpn. 2021, 94, 1232–1257. [Google Scholar] [CrossRef]
- Chapman, A.; Kubota, E.M.; Nagao, A.; Bertsch, K.; Macadre, A.; Tsuchiyama, T.; Masamura, T.; Takaki, S.; Komoda, R.; Dadfarnia, M.; et al. Achieving a carbon neutral future through advanced functional materials and technologies. Bull. Chem. Soc. Jpn. 2022, 95, 73–103. [Google Scholar] [CrossRef]
- Li, J.; Kataoka, K. Chemo-physical strategies to advance the in vivo functionality of targeted nanomedicine: The next generation. J. Am. Chem. Soc. 2021, 143, 538–559. [Google Scholar] [CrossRef]
- Fujita, Y.; Niizeki, T.; Fukumitsu, N.; Ariga, K.; Yamauchi, Y.; Malgras, V.; Kaneti, Y.V.; Liu, C.-H.; Hatano, K.; Suematsu, H.; et al. Mechanisms responsible for adsorption of molybdate ions on alumina for the production of medical radioisotopes. Bull. Chem. Soc. Jpn. 2022, 95, 129–137. [Google Scholar] [CrossRef]
- Komiyama, M. Molecular mechanisms of the medicines for COVID-19. Bull. Chem. Soc. Jpn. 2022, 95, 1308–1317. [Google Scholar] [CrossRef]
- Melis, A. Dynamics of photosynthetic membrane composition and function. Biochim. Biophys. Acta Bioenerg. 1991, 1058, 87–106. [Google Scholar] [CrossRef]
- Zhu, X.-G.; Long, S.P.; Ort, D.R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 2008, 19, 153–159. [Google Scholar] [CrossRef]
- Howard, J.; Hyman, A.A. Dynamics and mechanics of the microtubule plus end. Nature 2003, 422, 753–758. [Google Scholar] [CrossRef]
- Wagoner, J.A.; Dill, K.A. Mechanisms for achieving high speed and efficiency in biomolecular machines. Proc. Natl. Acad. Sci. USA 2019, 116, 5902–5907. [Google Scholar] [CrossRef] [PubMed]
- Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Machine learning in materials informatics: Recent applications and prospects. NPJ Comput. Mater. 2017, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Neto, M.P.; Soares, A.C.; Oliveira, O.N., Jr.; Paulovich, F.V. Machine learning used to create a multidimensional calibration space for sensing and biosensing data. Bull. Chem. Soc. Jpn. 2021, 94, 1553–1562. [Google Scholar] [CrossRef]
- Oaki, Y.; Igarashi, Y. Materials informatics for 2D materials combined with sparse modeling and chemical perspective: Toward small-data-driven chemistry and materials science. Bull. Chem. Soc. Jpn. 2021, 94, 2410–2422. [Google Scholar] [CrossRef]
- Chaikittisilp, W.; Yamauchi, Y.; Ariga, K. Material evolution with nanotechnology, nanoarchitectonics, and materials informatics: What will be the next paradigm shift in nanoporous materials? Adv. Mater. 2022, 34, 2107212. [Google Scholar] [CrossRef]
- Oviedo, L.R.; Oviedo, V.R.; Martins, M.O.; Fagan, S.B.; da Silva, W.L. Nanoarchitectonics: The role of artificial intelligence in the design and application of nanoarchitectures. J. Nanoparticle Res. 2022, 24, 157. [Google Scholar] [CrossRef]
- Děkanovský, L.; Li, J.; Zhou, H.; Sofer, Z.; Khezri, B. Nano/Microrobots Line Up for Gastrointestinal Tract Diseases: Targeted Delivery, Therapy, and Prevention. Energies 2022, 15, 426. [Google Scholar] [CrossRef]
- Li, J.; Dekanovsky, L.; Khezri, B.; Wu, B.; Zhou, H.; Sofer, Z. Biohybrid Micro- and Nanorobots for Intelligent Drug Delivery. Cyborg Bionic Syst. 2022, 2022, 98240. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ariga, K. Molecular Machines and Microrobots: Nanoarchitectonics Developments and On-Water Performances. Micromachines 2023, 14, 25. https://doi.org/10.3390/mi14010025
Ariga K. Molecular Machines and Microrobots: Nanoarchitectonics Developments and On-Water Performances. Micromachines. 2023; 14(1):25. https://doi.org/10.3390/mi14010025
Chicago/Turabian StyleAriga, Katsuhiko. 2023. "Molecular Machines and Microrobots: Nanoarchitectonics Developments and On-Water Performances" Micromachines 14, no. 1: 25. https://doi.org/10.3390/mi14010025
APA StyleAriga, K. (2023). Molecular Machines and Microrobots: Nanoarchitectonics Developments and On-Water Performances. Micromachines, 14(1), 25. https://doi.org/10.3390/mi14010025