Characterization of Multilayer Coupling Based on Square Complementary Split Ring Resonator for Multiport Device Implementation
Abstract
:1. Introduction
2. Complementary Split Ring Resonator
3. Resonators
4. Power Dividers
5. Duplexers and Triplexers
6. Equivalent Circuits Parameters Compilation and Summary of Main Results
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tataria, H.; Shafi, M.; Molisch, A.F.; Dohler, M.; Sjöland, H.; Tufvesson, F. 6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities. Proc. IEEE 2021, 109, 1166–1199. [Google Scholar] [CrossRef]
- Popovski, P.; Chiariotti, F.; Huang, K.; Kalor, A.E.; Kountouris, M.; Pappas, N.; Soret, B. A Perspective on Time Toward Wireless 6G. Proc. IEEE 2022, 110, 1116–1146. [Google Scholar] [CrossRef]
- Shojaeifard, A.; Wong, K.-K.; Tong, K.-F.; Chu, Z.; Mourad, A.; Haghighat, A.; Hemadeh, I.; Nguyen, N.T.; Tapio, V.; Juntti, M. MIMO Evolution Beyond 5G Through Reconfigurable Intelligent Surfaces and Fluid Antenna Systems. Proc. IEEE 2022, 110, 1244–1265. [Google Scholar] [CrossRef]
- Ding, Z.; Lv, L.; Fang, F.; Dobre, O.A.; Karagiannidis, G.K.; Al-Dhahir, N.; Schober, R.; Poor, H.V. A State-of-the-Art Survey on Reconfigurable Intelligent Surface-Assisted Non-Orthogonal Multiple Access Networks. Proc. IEEE 2022, 110, 1358–1379. [Google Scholar] [CrossRef]
- Al-Bawri, S.S.; Islam, M.T.; Islam, S.; Singh, M.J.; Alsaif, H. Massive metamaterial system-loaded MIMO antenna array for 5G base stations. Sci. Rep. 2022, 12, 14311. [Google Scholar] [CrossRef]
- Shabbir, T.; Islam, M.T.; Al-Bawri, S.S.; Aldhaheri, R.W.; Alharbi, K.H.; Aljohani, A.J.; Saleem, R. 16-Port Non-Planar MIMO Antenna System With Near-Zero-Index (NZI) Metamaterial Decoupling Structure for 5G Applications. IEEE Access 2020, 8, 157946–157958. [Google Scholar] [CrossRef]
- Bin Ashraf, F.; Alam, T.; Islam, M.T. A Uniplanar Left-Handed Metamaterial for Terrestrial Microwave Links. IEEE Microw. Wirel. Components Lett. 2018, 28, 108–110. [Google Scholar] [CrossRef]
- Lerosey, G.; Fink, M. Wavefront Shaping for Wireless Communications in Complex Media: From Time Reversal to Reconfigurable Intelligent Surfaces. Proc. IEEE 2022, 110, 1210–1226. [Google Scholar] [CrossRef]
- Martini, E.; Maci, S. Theory, Analysis, and Design of Metasurfaces for Smart Radio Environments. Proc. IEEE 2022, 110, 1227–1243. [Google Scholar] [CrossRef]
- Gupta, K.C.; Bahl, I.; Garg, R. Microstrip Lines and Slotlines; Artech House: Dedham, MA, USA, 1979. [Google Scholar]
- Vegesna, S.; Saed, M.A. Compact two-layer microstrip bandpass filters using broadside-coupled resonators. Prog. Electromagn. Res. B 2012, 37, 81–102. [Google Scholar] [CrossRef]
- Ho, C.-H.; Fan, L.; Chang, K. Slot-coupled double-sided microstrip interconnects and couplers. In Proceedings of the 1993 IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 14-18 June 1993; Volume 3, pp. 1321–1324. [Google Scholar] [CrossRef]
- Jaisson, D. Multilayer microstrip directional coupler with discrete coupling. IEEE Trans. Microw. Theory Tech. 2000, 48, 1591–1595. [Google Scholar] [CrossRef]
- Herscovici, N.; Pozar, D. Full-wave analysis of aperture-coupled microstrip lines. IEEE Trans. Microw. Theory Tech. 1991, 39, 1108–1114. [Google Scholar] [CrossRef]
- Omar, A.; Dib, N. Analysis of slot-coupled transitions from microstrip-to-microstrip and microstrip-to-waveguides. IEEE Trans. Microw. Theory Tech. 1997, 45, 1127–1132. [Google Scholar] [CrossRef]
- Huang, X.; Wu, K.-L. A Broadband and Vialess Vertical Microstrip-to-Microstrip Transition. IEEE Trans. Microw. Theory Tech. 2012, 60, 938–944. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, L.; Choi, W.-W.; Tam, K.-W. Wideband vertical microstrip-to-microstrip transition designed with cross-coupled microstrip/slotline resonators. In Proceedings of the 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Tanaka, T.; Tsunoda, K.; Aikawa, M. Slot-coupled directional couplers between double-sided substrate microstrip lines and their applications. IEEE Trans. Microw. Theory Tech. 1988, 36, 1752–1757. [Google Scholar] [CrossRef]
- Schwab, W.; Menzel, W. On the design of planar microwave components using multilayer structures. IEEE Trans. Microw. Theory Tech. 1992, 40, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Meissner, P.; Kitlinski, M. A 3-dB multilayer coupler with UC-PBG structure. IEEE Microw. Wirel. Components Lett. 2005, 15, 52–54. [Google Scholar] [CrossRef]
- You, S.-J.; Liao, W.-J. A multi-layer coupled-line power divider. In Proceedings of the 2008 8th International Symposium on Antennas, Propagation and EM Theory, Kunming, China, 2–5 November 2008; pp. 675–678. [Google Scholar] [CrossRef]
- Falcone, F.; Lopetegi, T.; Baena, J.; Marques, R.; Martin, F.; Sorolla, M. Effective negative-/spl epsiv/stopband microstrip lines based on complementary split ring resonators. IEEE Microw. Wirel. Components Lett. 2004, 14, 280–282. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Falcone, F.; Lopetegi, T.; Laso, M.; Baena, J.D.; Bonache, J.; Beruete, M.; Marqués, R.; Martin, F.; Sorolla, M. Babinet Principle Applied to the Design of Metasurfaces and Metamaterials. Phys. Rev. Lett. 2004, 93, 197401. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, S.K. Dual-band bandpass filters based on multilayer ring resonators. In Proceedings of the 2011 11th Mediterranean Microwave Symposium (MMS), Yasmine Hammamet, Tunisia, 8–10 September 2011; pp. 34–37. [Google Scholar] [CrossRef]
- Bonache, J.; Gil, I.; Garcia-Garcia, J.; Martin, F. Novel microstrip bandpass filters based on complementary split-ring resonators. IEEE Trans. Microw. Theory Tech. 2006, 54, 265–271. [Google Scholar] [CrossRef]
- Mondal, P.; Mandal, M.; Chaktabarty, A.; Sanyal, S. Compact bandpass filters with wide controllable fractional bandwidth. IEEE Microw. Wirel. Components Lett. 2006, 16, 540–542. [Google Scholar] [CrossRef]
- Gil, M.; Bonache, J.; Garcia-Garcia, J.; Martel, J.; Martin, F. Composite Right/Left-Handed Metamaterial Transmission Lines Based on Complementary Split-Rings Resonators and Their Applications to Very Wideband and Compact Filter Design. IEEE Trans. Microw. Theory Tech. 2007, 55, 1296–1304. [Google Scholar] [CrossRef]
- Jarauta, E.; Laso, M.A.G.; Lopetegi, T.; Falcone, F.; Beruete, M.; Baena, J.D.; Marcotegui, A.; Bonache, J.; García, J.; Marqués, R.; et al. Novel microstrip backward coupler with metamaterial cells for fully planar fabrication techniques. Microw. Opt. Technol. Lett. 2006, 48, 1205–1209. [Google Scholar] [CrossRef]
- Horestani, A.K.; Abbott, D.; Fumeaux, C. Rotation Sensor Based on Horn-Shaped Split Ring Resonator. IEEE Sens. J. 2013, 13, 3014–3015. [Google Scholar] [CrossRef]
- Zamora, G.; Zuffanelli, S.; Aguila, P.; Paredes, F.; Martin, F.; Bonache, J. Broadband UHF-RFID Passive Tag Based on Split-Ring Resonator (SRR) and T-Match Network. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 517–520. [Google Scholar] [CrossRef]
- Baena, J.; Bonache, J.; Martin, F.; Sillero, R.; Falcone, F.; Lopetegi, T.; Laso, M.; Garcia-Garcia, J.; Gil, I.; Portillo, M.; et al. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 2005, 53, 1451–1461. [Google Scholar] [CrossRef]
- Aznar, F.; Bonache, J.; Martín, F. Improved circuit model for left-handed lines loaded with split ring resonators. Appl. Phys. Lett. 2008, 92, 043512. [Google Scholar] [CrossRef] [Green Version]
- Naqui, J.; Duran-Sindreu, M.; Martin, F. Modeling Split-Ring Resonator (SRR) and Complementary Split-Ring Resonator (CSRR) Loaded Transmission Lines Exhibiting Cross-Polarization Effects. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 178–181. [Google Scholar] [CrossRef]
- Liu, J.C.; Lin, H.C.; Zeng, B.H.; Yeh, K.D.; Chang, D.C. An Improved Equivalent Circuit Model for CSRR-Based Bandpass Filter Design With Even and Odd Modes. IEEE Microw. Wirel. Compon. Lett. 2010, 20, 193–195. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering, 4th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Jarauta, E.; Falcone, F.; Beruete, M. High-Q series coupled microstrip split-ring resonator device. Waves Random Complex Media 2014, 24, 218–226. [Google Scholar] [CrossRef]
- Marqués, R.; Medina, F.; Rafii-El-Idrissi, R. Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B 2002, 65, 144440. [Google Scholar] [CrossRef]
- Boonlom, K.; Kerdsumang, S.; Akkaraekthalin, P. A miniaturized bandpass filter using two-layers of microstrip open-loop resonators. In Proceedings of the 2005 13th IEEE International Conference on Networks Jointly Held with the 2005 IEEE 7th Malaysia International Conf on Communic, Kuala Lumpur, Malaysia, 16–18 November 2005; p. 4. [Google Scholar] [CrossRef]
- Hashemi, S.K.; Mirmohammadi, S.N.; Dalasm, Z.K. Balun and power divider based on multilayer ring resonators (MRR). In Proceedings of the 2017 IEEE 17th International Conference on Ubiquitous Wireless Broadband (ICUWB), Salamanca, Spain, 12–15 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Boonlom, K.; Pratumvinit, T.; Akkaraekthalin, P. A compact microstrip two-layers bandpass filter using improved interdigital-loop resonators. In Proceedings of the 2009 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT); 2009; pp. 367–370. [Google Scholar] [CrossRef]
- Choudhary, D.K.; Chaudhary, R.K. A compact SIW based filtering power divider with improved selectivity using CSRR. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Fall (PIERS—FALL), Singapore, 19–22 November 2017; pp. 1334–1337. [Google Scholar] [CrossRef]
- Danaeian, M.; Moznebi, A.; Afrooz, K.; Hakimi, H. Miniaturised equal/unequal SIW power divider with bandpass response loaded by CSRRs. Electron. Lett. 2016, 52, 1864–1866. [Google Scholar] [CrossRef]
- Shen, X.; Feng, W.; Chen, H.; Che, W. Narrowband Filtering Balun Power Divider Based on SIW and CSRRs. In Proceedings of the 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, 7–11 May 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Jibreel, O.; Dib, N.; Shamaileh, K.A. Miniaturized Bailey Power Divider Using SRRs. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 203–204. [Google Scholar] [CrossRef]
- Yang, X.; Hong, D.H. A 4-GHz 1:10 unequal Wilkinson power divider using split ring resonator. In Proceedings of the 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December 2017; pp. 2718–2721. [Google Scholar] [CrossRef]
- Li, Q.; Gong, J.; Shi, X.; Wang, X.; Wei, F. A compact broadband multi-layer in-phase power divider. In Proceedings of the 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 8–11 May 2010; pp. 756–758. [Google Scholar] [CrossRef]
- Inoue, N.; Kawakami, T.; Horii, Y.; Kitamura, T. A super-compact dual-band Wilkinson power divider composed of multi-layered CRLH transmission lines. In Proceedings of the 40th European Microwave Conference, Paris, France, 28–30 September 2010; pp. 433–436. [Google Scholar] [CrossRef]
- Zeng, H.Y.; Wang, G.M.; Wei, D.Z.; Wang, Y.W. Planar diplexer using composite right-/ left-handed transmission line under balanced condition. Electron. Lett. 2012, 48, 104–106. [Google Scholar] [CrossRef]
- An, J.; Wang, G.; Zhang, C.; Zhang, P. Diplexer using composite right-/left-handed transmission line. Electron. Lett. 2018, 44, 685–687. [Google Scholar] [CrossRef]
- Bonache, J.; Gil, I.; Garcia-Garcia, J.; Martin, F. Complementary split ring resonators for microstrip diplexer design. Electron. Lett. 2005, 41, 810–811. [Google Scholar] [CrossRef] [Green Version]
- García-Lampérez, A.; Gómez-García, R.; Salazar-Palma, M. Compact diplexer with edge-coupled and nonbianisotropic split-ring resonators. In Proceedings of the 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, G.; Li, J. Compact and highly-selective microstrip bandpass filter and diplexer using two-stage twist modified split-ring resonators. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Tang, C.-W.; You, S.-F. Design methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros. IEEE Trans. Microw. Theory Tech. 2006, 54, 717–723. [Google Scholar] [CrossRef]
- Yang, T.; Chi, P.; Itoh, T. Compact Quarter-Wave Resonator and Its Applications to Miniaturized Diplexer and Triplexer. IEEE Trans. Microw. Theory Tech. 2011, 59, 260–269. [Google Scholar] [CrossRef]
- Fernández-Prieto, A.; Lujambio, A.; Martel, J.; Medina, F.; Martín, F.; Boix, R.R. Balanced-to-Balanced Microstrip Diplexer Based on Magnetically Coupled Resonators. IEEE Access 2018, 6, 18536–18547. [Google Scholar] [CrossRef]
- Radonić, V.; Crnojević-Bengin, V.; Baskakova, A.; Vendik, I. Multilayer microwave diplexers based on dual-mode resonators for ISM/WiFi bands. In Proceedings of the 2014 Mediterranean Microwave Symposium (MMS2014), Marrakech, Morocco, 12–14 December 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Horii, Y.; Caloz, C.; Itoh, T. Super-compact multilayered left-handed transmission line and diplexer application. IEEE Trans. Microw. Theory Tech. 2005, 53, 1527–1534. [Google Scholar] [CrossRef]
- Aksoy, S.C.; Yıldı, İ. A multilayered triplexer based on interdigital filter topology with PCB technology. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–4. [Google Scholar] [CrossRef]
CSRR as Elementary Particle | ||
---|---|---|
Resonators Serial SCSRR Second layer output Double frequency Perpendicular output | Power dividers Single layer Outputs on top Outputs on down Mixed outputs | Duplexers SSRR + SCSRR Outputs top and down Outputs on top layer Outputs on lower layer Triplexers SSRR + SCSRR Outputs mixed layer Outputs on top layer Outputs on lower layer |
Ref | f0 (GHz) | Effect Size λg2 | Insertion Loss (dB) | Return Loss (dB) |
---|---|---|---|---|
[25] | 5 | 0.005 | 0 | 21 |
[39] | 1.95 | 0.021 | 3 | 20 |
This work (Figure 4) | 5.01 | 0.0019 | 0.91 | 18.8 |
This work (Figure 5) | 4.24 | 0.0027 | 1.1/1.2 | 15.4/19.3 |
This work (Figure 8) | 5 | 0.0019 | 0.83 | 22.1 |
This work (Figure 10) | 4.74 | 0.0021 | 0.71 | 22 |
Reference | f0 (GHz) | Effect Size λg2 | Insertion Loss (dB) | Efficiency (%) |
---|---|---|---|---|
[21] | 2.45 | 0.0019 | 4.25/4.7 | 85 |
[40] | 6.3 | 0.0012 | N/A | N/A |
[47] | 5.00 | 0.0019 | 3.8/4 | 90 |
This work (Figure 11) | 5.24 | 0.0017 | 3.24/4.29 | 75.5 |
This work (Figure 13) | 5.63 | 0.0019 | 4.03/4.69 | 85.9 |
This work (Figure 15) | 4.72 | 0.0019 | 3.67/3.70 | 99 |
This work (Figure 16) | 5.00 | 0.0021 | 3.53/3.89 | 90.5 |
Reference | Effect Size λg2 | (GHz) | |||
---|---|---|---|---|---|
[55] | 0.218 | 2.49/2.98 | 1.19 | 1.15/1.54 | 35/33 |
[56] | 0.185 | 2.45/3.6 | 1.47 | 1.45/1.3 | 24/19 |
[57] | 0.0089 | 1/2 | 2 | N/A | 38.8/48.9 |
This work (Figure 17) | 0.055 | 4/5.57 | 1.39 | 0.79/2.2 | 27.3/12.9 |
This work (Figure 19) | 0.0025 | 4.8/6.4 | 1.33 | 0.53/0.52 | 17.2/29 |
This work (Figure 20) | 0.0024 | 4.7/6.1 | 1.3 | 0.51/0.71 | 20/22 |
This work (Figure 21) | 0.0028 | 3.98/5.4 | 1.35 | 0.52/0.67 | 19/20 |
Reference | Effect Size λg2 | (GHz) | |||
---|---|---|---|---|---|
[54] | 1/2/2.4 | 2/2.4 | 0.9/1.8/2.4 | >10.8 | |
[59] | 0.075 | 0.8/1/1.2 | 1.25/1.5 | 2.2 | >10 |
This work (Figure 22) | 0.0021 | 4.4/5.1/5.5 | 1.16/1.25 | 0.7/0.9/2.2 | 25.9/21.9/16.1 |
This work (Figure 24) | 0.0030 | 4.9/5.5/6.5 | 1.12/1.32 | 0.56/0.71/0.66 | 21.8/15.9/23.9 |
This work (Figure 27) | 0.0028 | 5.1/5.6/6.2 | 1.10/1.22 | 1.2/1.8/0.9 | 10.2/13.1/17.7 |
This work (Figure 28) | 0.0026 | 5/5.4/6.4 | 1.08/1.28 | 0.54/0.68/0.91 | 21.1/17.2/14.8 |
Device | Fig. | Lin (nH) | Cin (pF) | CSCSRR (pF) | LSCSRR (nH) | Lout (nH) | Cout (pF) | LSSRR (nH) | CSSRR (pF) | Cp (pF) | Cs (pF) | Cgnd (pF) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Resonator. SCSRR in microstrip | (Figure 1c) | 1.16 1 | 0.296 1 | 0.380 | 1.690 | - | - | - | - | - | - | - |
Resonator. Serial resonator SCSRR 1 layer | (Figure 4a) | 1.16 | 0.296 | 0.81 2 | 0.87 3 | 1.16 | 0.296 | - | - | - | - | - |
Resonator. Double frequency | (Figure 5b) | 1.1 | 0.24 | 1.12 | 1 | 1.1 | 0.24 | 7.1 | 0.062 | 0.009 | 0.091 | 0.006 |
Resonator. Serial resonator SCSRR 2 layers | (Figure 8a) | 1.16 | 0.296 | 0.81 2 | 0.87 3 | 1.16 | 0.296 | - | - | - | - | - |
Resonator. SCSRR 2 layer-cross outputs | (Figure 4a) 4 | 1.16 | 0.296 | 0.81 2 | 0.87 3 | 1.16 | 0.137 | - | - | - | - | - |
Power divider. Cross output both 2nd layer | (Figure 14a) | 1.16 | 0.296 | 0.81 2 | 0.87 3 | 1.16 1.16 | 0.19 0.19 | - | - | - | - | - |
Power divider. Serial + cross Outputs both 2nd layer | (Figure 16b) | 1.16 | 0.296 | 0.81 2 | 0.87 3 | 1.16 1.16 | 0.137 0.296 | - | - | - | - | - |
Duplexer. SSRR + SCSRR. Outputs in two layers | (Figure 18a) | 0.01 5 2.2 | 0.04 5 0.24 | 1.08 | 1.19 | 0.01 5 1.6 | 0.04 5 0.24 | 7.1 | 0.062 | 0.009 | 0.091 | 0.006 |
Duplexer 2 SCSRRs All outputs bottom layer | (Figure 19b) | 3.8 | 0.102 0.102 | 0.69 0.99 | 0.74 1.06 | 5.3 5.3 | 0.102 0.102 | - | - | - | - | - |
Triplexer. SSRR + 2 SCSRRs | (Figure 23a) | 0.01 3.7 | 0.04 0.127 0.127 | 1.05 0.88 | 1.11 0.92 | 0.01 5.3 5.3 | 0.01 0.127 0.127 | 1.75 | 0.39 | 0.009 | 0.091 | 0.006 |
Triplexer. 3 SCSRRs All outputs bottom layer | (Figure 25a) | 3.8 | 0.127 0.127 0.127 | 0.69 1.05 0.88 | 0.73 1.11 0.92 | 5.3 5.3 5.3 | 0.127 0.127 0.127 | - | - | - | - | - |
Device | Fig. | (GHz) | Effect Size λg2 | Insertion Loss (dB) | Return Loss (dB) | Efficiency (%) | |
---|---|---|---|---|---|---|---|
Resonator. SCSRR in microstrip | (Figure 1d) | 4.71 | - | 38 | - | - | - |
Resonator. Serial resonator SCSRR 1 layer | (Figure 4b) | 5.01 | 0.0019 | 0.91 | 18.8 | - | - |
Resonator. Double frequency | (Figure 5b) | 4.24 5.51 | 0.0027 | 1.1 1.2 | 15.4 19.3 | - | - |
Resonator. Serial resonator SCSRR 2 layers | (Figure 8b) | 5 | 0.0019 | 0.83 | 22.1 | - | - |
Resonator. SCSRR 2 layer-cross outputs | (Figure 10) | 4.74 | 0.0021 | 0.71 | 22 | - | - |
Power divider All outputs on the top layer | (Figure 12) | 5.24 | 0.0017 | 3.24 4.29 | - | 75.5 | - |
Power divider. Cross output both 2nd layer | (Figure 14b) | 5.63 | 0.0019 | 4.03 4.69 | - | 85.9 | - |
Power divider. Serial + cross Outputs in different layers | (Figure 15b) | 4.72 | 0.0019 | 3.67 3.70 | - | 99 | - |
Power divider. Serial + cross Outputs both 2nd layer | (Figure 16c) | 5.00 | 0.0021 | 3.53 3.89 | - | 90.5 | - |
Duplexer. SSRR + SCSRR. Outputs in different layers | (Figure 18b) | 4 5.57 | 0.055 | 0.79 2.2 | 27.3 12.9 | - | 1.39 |
Duplexer 2 SCSRRs All outputs bottom layer | (Figure 19c) | 4.8 6.4 | 0.0025 | 0.53 0.52 | 17.2 29 | - | 1.33 |
Duplexer 2 SCSRRs Outputs in different layers | (Figure 20b) | 4.7 6.1 | 0.0024 | 0.51 0.71 | 20 22 | - | 1.3 |
Duplexer 2 SCSRRs All outputs on the top layer | (Figure 21b) | 3.98 5.4 | 0.0028 | 0.52 0.67 | 19 20 | - | 1.35 |
Triplexer SSRR + 2 SCSRRs Outputs in different layers | (Figure 23b) | 4.4 5.1 5.5 | 0.0021 | 0.7 0.9 2.2 | 25.9 21.9 16.1 | - | 1.16 1.25 |
Triplexer 3 SCSRRs All outputs bottom layer | (Figure 25a) | 4.9 5.5 6.5 | 0.0030 | 0.56 0.71 0.66 | 21.8 15.9 23.9 | - | 1.12 1.32 |
Triplexer 3 SCSRRs Outputs in different layers | (27c) | 5.1 5.6 6.2 | 0.0028 | 1.2 1.8 0.9 | 10.2 13.1 17.7 | - | 1.10 1.22 |
Triplexer 3 SCSRRs All outputs on the top layer | (Figure 28b) | 5 5.4 6.4 | 0.0026 | 0.54 0.68 0.91 | 21.1 17.2 14.8 | - | 1.08 1.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarauta, E.; Iriarte, J.C.; Falcone, F. Characterization of Multilayer Coupling Based on Square Complementary Split Ring Resonator for Multiport Device Implementation. Micromachines 2023, 14, 68. https://doi.org/10.3390/mi14010068
Jarauta E, Iriarte JC, Falcone F. Characterization of Multilayer Coupling Based on Square Complementary Split Ring Resonator for Multiport Device Implementation. Micromachines. 2023; 14(1):68. https://doi.org/10.3390/mi14010068
Chicago/Turabian StyleJarauta, Eduardo, Juan Carlos Iriarte, and Francisco Falcone. 2023. "Characterization of Multilayer Coupling Based on Square Complementary Split Ring Resonator for Multiport Device Implementation" Micromachines 14, no. 1: 68. https://doi.org/10.3390/mi14010068
APA StyleJarauta, E., Iriarte, J. C., & Falcone, F. (2023). Characterization of Multilayer Coupling Based on Square Complementary Split Ring Resonator for Multiport Device Implementation. Micromachines, 14(1), 68. https://doi.org/10.3390/mi14010068