Effect of Flow Rate Modulation on Alginate Emulsification in Multistage Microfluidics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Device Design and Fabrication
2.3. Microchannel Surface Treatment
2.4. Solution Preparation
2.5. Parameter Setup
2.6. Data Acquisition and Analysis
3. Results
3.1. First Stage of Emulsification: Water-In-Oil Emulsion
3.2. Alginate Emulsification
3.3. Second Stage of Emulsification: Oil-In-Water Emulsion
3.4. Double Emulsification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leriche, G.; Cifelli, J.L.; Sibucao, K.C.; Patterson, J.P.; Koyanagi, T.; Gianneschi, N.C.; Yang, J. Characterization of drug emulsification and retention in archaea-inspired tetraether liposomes. Org. Biomol. Chem. 2017, 15, 2157–2162. [Google Scholar] [CrossRef]
- Kumar, R.; Srivastava, V.R.; Mahapatra, S.; Dkhar, D.S.; Kumari, R.; Prerna, K.; Dubey, V.K.; Chandra, P. Drug Encapsulated Lipid-Polymeric Nanohybrid as a Chemo-therapeutic Platform of Cancer. Nanotheranostics 2023, 7, 167–175. [Google Scholar] [CrossRef]
- Nurhayati, R.W.; Cahyo, R.D.; Pratama, G.; Mubarok, W.; Anggraini, D. Alginate-chitosan microencapsulated cells for improving hematopoietic stem cell’s maintenance and expansion. Tissue Eng. Part A 2022, 28, 289. [Google Scholar]
- Lim, F.; Sun, A.M. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980, 210, 908–910. [Google Scholar] [CrossRef]
- Razavi, M.; Ren, T.; Zheng, F.; Telichko, A.; Wang, J.; Dahl, J.J.; Demirci, U.; Thakor, A.S. Facilitating islet transplantation using a three-step approach with mesenchymal stem cells, encapsulation, and pulsed focused ultrasound. Stem Cell Res. 2020, 11, 405. [Google Scholar] [CrossRef]
- Stock, A.A.; Gonzalez, G.C.; Pete, S.I.; De Toni, T.; Berman, D.M.; Rabassa, A.; Diaz, W.; Geary, J.C., Jr.; Willman, M.; Jackson, J.M.; et al. Performance of islets of Langerhans conformally coated via an emulsion cross-linking method in diabetic rodents and nonhuman primates. Sci. Adv. 2022, 8, eabm3145. [Google Scholar] [CrossRef]
- Nurhayati, R.W.; Cahyo, R.D.; Pratama, G. Double-Layered Microencapsulated Human Hematopoietic Stem Cells For Delivering Paracrine Factors. Tissue Eng. Part. A 2022, 28, S539. [Google Scholar]
- Manzoli, V.; Villa, C.; Bayer, A.L.; Morales, L.C.; Molano, R.D.; Torrente, Y.; Ricordi, C.; Hubbell, J.A.; Tomei, A.A. Immunoisolation of murine islet allografts in vascularized sites through conformal coating with polyethylene glycol. Am. J. Transplant. 2018, 18, 590–603. [Google Scholar] [CrossRef]
- Parisi-Amon, W.A.; Mulyasasmita, C.C.; Heilshorn, S. Protein-Engineered Injectable Hydrogel to Improve Retention of Transplanted Adipose-Derived Stem Cells. Adv. Healthc. Mater. 2012, 2, 428–432. [Google Scholar] [CrossRef]
- Nurhayati, R.; Cahyo, R.D.; Alawiyah, K.; Pratama, G.; Agustina, E.; Antarianto, R.D.; Prijanti, A.R.; Mubarok, W.; Rahyussalim, A.J. Development of double-layered alginate-chitosan hydrogels for human stem cell microencapsulation. AIP Conf. Proc. 2019, 219, 020004. [Google Scholar] [CrossRef]
- Pupa, P.; Apiwatsiri, P.; Sirichokchatchawan, W.; Pirarat, N.; Muangsin, N.; Shah, A.A.; Prapasarakul, N. The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Sci. Rep. 2021, 11, 13753. [Google Scholar] [CrossRef]
- Montes, C.; Villaseñor, M.J.; Rios, A. Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: Achievements and challenges. Trends Food Sci. Technol. 2019, 90, 47–62. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V. Technology and potential applications of probiotic encapsulation in fermented milk products. J. Food Sci. Technol. 2015, 52, 4679–4696. [Google Scholar] [CrossRef]
- Glawdel, T.; Elbuken, C.; Ren, C. Droplet Generation in Microfluidics. In Encyclopedia of Microfluidics and Nanofluidics; Li, D., Ed.; Springer: Boston, MA, USA, 2013; pp. 1–12. [Google Scholar] [CrossRef]
- Xu, J.; Li, S.; Tan, J.; Luo, G. Correlations of droplet formation in T-junction microfluidic devices: From squeezing to dripping. Microfluid. Nanofluidics 2008, 5, 711–717. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, L. Passive and active droplet generation with microfluidics: A review. Lab Chip 2017, 17, 34–75. [Google Scholar] [CrossRef]
- Figueiredo, J.A.; Silva, C.R.P.; Souza Oliveira, M.F.; Norcino, L.B.; Campelo, P.H.; Botrel, D.A.; Borges, S.V. Microencapsulation by spray chilling in the food industry: Opportunities, challenges, and innovations. Trends Food Sci. Technol. 2022, 120, 274–287. [Google Scholar] [CrossRef]
- Dias, M.I.; Ferreira, I.C.; Barreiro, M.F. Microencapsulation of bioactives for food applications. Food Funct. 2015, 6, 1035–1052. [Google Scholar] [CrossRef]
- Ikebe, A.; Suzuki, K. Mesenchymal Stem Cells for Regenerative Therapy: Optimization of Cell Preparation Protocols. BioMed Res. Int. 2014, 2014, 951512. [Google Scholar] [CrossRef]
- Hidema, R.; Ohashi, R.; Muller, S.J.; Suzuki, H. Effects of channel geometry and physicochemical properties of solutions on stable double emulsion production in planar microfluidic devices having triangular orifices. AIP Adv. 2021, 11, 065219. [Google Scholar] [CrossRef]
- Kanai, T.; Tsuchiya, M. Microfluidic devices fabricated using stereolithography for preparation of monodisperse double emulsions. Chem. Eng. J. 2016, 290, 400–404. [Google Scholar] [CrossRef]
- Utech, S.; Prodanovic, R.; Mao, A.; Ostafe, R.; Mooney, D.; Weitz, D. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture. Adv. Healthc. Mater. 2015, 4, 1628–1633. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Luo, Y.; Wang, M.; Chen, F.; Liu, J.; Meng, K.; Zhao, H. Double-Layered Microcapsules Significantly Improve the Long-Term Effectiveness of Essential Oil. Polymers 2020, 12, 1651. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.; Rehman, A.; Feng, J.; Noreen, A.; Assadpour, E.; Kharazmi, M.S.; Lianfu, Z.; Jafari, S.M. Alginate-based nanocarriers for the delivery and controlled-release of bioactive compounds. Adv. Colloid Interface Sci. 2022, 307, 102744. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther. 2021, 6, 426. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, S.; Kassir, N.; Keshavarz Moraveji, M. Droplet microfluidics: Fundamentals and its advanced applications. RSC Adv. 2020, 10, 27560–27574. [Google Scholar] [CrossRef]
- Whulanza, Y.; Utomo, M.S.; Hilman, A. Realization of a passive micromixer using herringbone structure. AIP Conf. Proc. 2018, 1933, 040003. [Google Scholar] [CrossRef]
- Whulanza, Y.; Nadhif, H.; Istiyanto, J.; Supriadi, S.; Bachtiar, B. PDMS Surface Modification Using Biomachining Method for Biomedical Application. J. Biomim. Biomater. Biomed. Eng. 2016, 26, 66–72. [Google Scholar] [CrossRef]
- Nadhif, M.H.; Whulanza, Y.; Istiyanto, J.; Bachtiar, B.M. Delivery of Amphotericin B to Candida albicans by Using Biomachined Lab-on-a-Chip. J. Biomim. Biomater. Biomed. Eng. 2017, 30, 24–30. [Google Scholar] [CrossRef]
- Trantidou, T.; Elani, Y.; Parsons, E.; Ces, O. Hydrophilic Surface Modification of PDMS for Droplet Microfluidics Using a Simple, Quick, and Robust Method via PVA Deposition. 2022. Available online: https://www.nature.com/articles/micronano201691.pdf (accessed on 28 August 2023).
- Whulanza, Y.; Widyaratih, D.S.; Istiyanto, J.; Kiswanto, G. Realization and testing of lab-on-chip for human lung replication. ARPN J. Eng. Appl. Sci. 2014, 9, 2064–2067. [Google Scholar]
- Thomas, C.; Thomas, G.M. Capillary threads and viscous droplets in square microchannels. Phys. Fluids 2008, 20, 053302. [Google Scholar] [CrossRef]
- Loizou, K.; Wong, V.-L.; Hewakandamby, B. Examining the Effect of Flow Rate Ratio on Droplet Generation and Regime Transition in a Microfluidic T-Junction at Constant Capillary Numbers. Inventions 2018, 3, 54. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Wang, H.; Zhu, J.; Yang, Y. Alginate droplets pre-crosslinked in microchannels to prepare monodispersed spherical microgels. Colloids Surf. A Physicochem. Eng. Asp. 2015, 482, 371–377. [Google Scholar] [CrossRef]
- Shinji, S.; Sho, I.; Hitomi, I.; Keisuke, H.; Tomohiro, M.; Masahito, T.; Koei, K. Cell-enclosing gelatin-based microcapsule production for tissue engineering using a microfluidic flow-focusing system. Biomicrofluidics 2011, 5, 013402. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Padovani, J.I.; Howe, R.T.; Anis, Y.H. Modeling of Droplet Generation in a Microfluidic Flow-Focusing Junction for Droplet Size Control. Micromachines 2021, 12, 590. [Google Scholar] [CrossRef] [PubMed]
- Nathani, R.C.; Irwansyah, R.; Nurhayati, R.W.; Whulanza, Y. Analysis of droplet size control for stem cells encapsulation using lab-on-a-chip. AIP Conf. Proc. 2022, 2537, 040006. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Q.; Wang, J.; Fu, F.; Ren, J.; Zhao, Y. Microfluidic generation of egg-derived protein microcarriers for 3D cell culture and drug delivery. Sci. Bull. 2017, 62, 1283–1290. [Google Scholar] [CrossRef]
- Jankowski, P.; Ogończyk, D.; Derzsi, L.; Lisowski, W.; Garstecki, P. Hydrophilic polycarbonate chips for generation of oil-in-water (O/W) and water-in-oil-in-water (W/O/W) emulsions. Microfluid. Nanofluidics 2013, 14, 767–774. [Google Scholar] [CrossRef]
- Lao, K.L.; Wang, J.H.; Lee, G.B. A microfluidic platform for formation of double-emulsion droplets. Microfluid. Nanofluidics 2009, 7, 709–719. [Google Scholar] [CrossRef]
- Nisisako, T.; Okushima, S.; Torii, T. Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter. 2005, 1, 23–27. [Google Scholar] [CrossRef]
- Zhang, Y.; Ho, Y.P.; Chiu, Y.L.; Chan, H.F.; Chlebina, B.; Schuhmann, T.; You, L.; Leong, K.W. A programmable microenvironment for cellular studies via microfluidics-generated double emulsions. Biomaterials 2013, 34, 4564–4572. [Google Scholar] [CrossRef]
- Lin, S.; Mao, L.; Ying, J.; Berthet, N.; Zhou, J.; Riaud, A. Generation of double emulsions from commercial single-emulsion microfluidic chips: A quality-control study. Microfluid. Nanofluidics 2022, 26, 71. [Google Scholar] [CrossRef]
- Michelon, M.; Huang, Y.; de la Torre, L.G.; Weitz, D.A.; Cunha, R.L. Single-step microfluidic production of W/O/W double emulsions as templates for β-carotene-loaded giant liposomes formation. Chem. Eng. J. 2019, 366, 27–32. [Google Scholar] [CrossRef]
- Chan, H.; Zhang, Y.; Ho, Y.P.; Chiu, Y.-L.; Jung, Y.; Leong, K.W. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci. Rep. 2013, 3, 3462. [Google Scholar] [CrossRef] [PubMed]
- Saeki, D.; Sugiura, S.; Kanamori, T.; Sato, S.; Ichikawa, S. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer. Lab Chip 2010, 10, 357–362. [Google Scholar] [CrossRef]
- Dravid, A.; McCaughey-Chapman, A.; Raos, B.; O’carroll, S.J.; Connor, B.; Svirskis, D. Development of agarose–gelatin bioinks for extrusion-based bioprinting and cell encapsulation. Biomed. Mater. 2022, 17, 055001. [Google Scholar] [CrossRef]
Materials | Density (kg/m3) | Viscosity (kg/ms) |
---|---|---|
Alginate | 1600 | 0.02 |
Water | 998.2 | 0.001003 |
Mineral Oil | 840 | 0.014 |
Flow Rate [mL/h] | Reynolds Number [Re] | Capillary Number [Ca] | |||
---|---|---|---|---|---|
Oil | Water | Oil | Water | Oil | Water |
0.2 | 0.1 | 0.07 | 0.60 | 0.00899 | 0.00032 |
0.2 | 0.2 | 0.07 | 1.19 | 0.00899 | 0.00064 |
0.2 | 0.3 | 0.07 | 1.79 | 0.00899 | 0.00096 |
0.2 | 0.4 | 0.07 | 2.38 | 0.00899 | 0.00129 |
0.1 | 0.2 | 0.04 | 1.19 | 0.00449 | 0.00064 |
0.2 | 0.2 | 0.07 | 1.19 | 0.00899 | 0.00064 |
0.3 | 0.2 | 0.11 | 1.19 | 0.01349 | 0.00064 |
0.4 | 0.2 | 0.14 | 1.19 | 0.01798 | 0.00064 |
Flow Rate [mL/h] | Reynolds Number [Re] | Capillary’s Number [Ca] | |||
---|---|---|---|---|---|
Oil | Water | Oil | Water | Oil | Water |
1.4 | 0.7 | 0.07 | 0.60 | 0.00124 | 0.00004 |
1.4 | 1.4 | 0.07 | 1.19 | 0.00124 | 0.00009 |
1.4 | 2.1 | 0.07 | 1.79 | 0.00124 | 0.00013 |
1.4 | 2.8 | 0.07 | 2.38 | 0.00124 | 0.00018 |
0.7 | 1.4 | 0.04 | 1.19 | 0.00062 | 0.00009 |
1.4 | 1.4 | 0.07 | 1.19 | 0.00124 | 0.00009 |
2.1 | 1.4 | 0.11 | 1.19 | 0.00185 | 0.00009 |
2.8 | 1.4 | 0.14 | 1.19 | 0.00247 | 0.00009 |
Re of Alginate | Re of Oil | Re of Water | Generation Mode | Measured Alginate Droplet Diameter (Microns) | Calculated Alginate Droplet Diameter (Microns) |
---|---|---|---|---|---|
1.19 | 0.04 | 1.19 | N/A | N/A | N/A |
1.19 | 0.07 | 1.19 | Squeezing | 112.95 | 103.74 |
1.19 | 0.07 | 1.5 | Squeezing | 49.01 | 58.58 |
Inner Droplet Flow Rate (mL/h) | Outer Droplet Flow Rate (mL/h) | Inner/Core Droplet Diameter (µm) | Outer Droplet Diameter (µm) | Ref. |
---|---|---|---|---|
0.05–0.25 | 0.02–0.1 | ~40 | ~126–159 | [39] |
N/A | ~5–15 × 103 | ~52 | ~83 | [40] |
0.18 | 0.6 | ~45 | ~59 | [42] |
~1000 | ~3–12 × 103 | N/A | ~100–180 | [43] |
0.3–0.8 | 0.6–1.6 | ~65–90 | ~150 | [44] |
~0.1–0.5 | ~0.7–2.4 | ~50–100 | ~500–1000 | Current study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whulanza, Y.; Nathani, R.C.; Adimillenva, K.; Irwansyah, R.; Wahyu Nurhayati, R.; Utomo, M.S.; Abdullah, A.H. Effect of Flow Rate Modulation on Alginate Emulsification in Multistage Microfluidics. Micromachines 2023, 14, 1828. https://doi.org/10.3390/mi14101828
Whulanza Y, Nathani RC, Adimillenva K, Irwansyah R, Wahyu Nurhayati R, Utomo MS, Abdullah AH. Effect of Flow Rate Modulation on Alginate Emulsification in Multistage Microfluidics. Micromachines. 2023; 14(10):1828. https://doi.org/10.3390/mi14101828
Chicago/Turabian StyleWhulanza, Yudan, Rithwik Chandur Nathani, Klaugusta Adimillenva, Ridho Irwansyah, Retno Wahyu Nurhayati, Muhammad Satrio Utomo, and Abdul Halim Abdullah. 2023. "Effect of Flow Rate Modulation on Alginate Emulsification in Multistage Microfluidics" Micromachines 14, no. 10: 1828. https://doi.org/10.3390/mi14101828
APA StyleWhulanza, Y., Nathani, R. C., Adimillenva, K., Irwansyah, R., Wahyu Nurhayati, R., Utomo, M. S., & Abdullah, A. H. (2023). Effect of Flow Rate Modulation on Alginate Emulsification in Multistage Microfluidics. Micromachines, 14(10), 1828. https://doi.org/10.3390/mi14101828