Total Ionizing Dose Effects on the Threshold Voltage of GaN Cascode Devices
Abstract
:1. Introduction
2. Device Structure and Test Results
3. TID Experiments and Annealing Effects
3.1. TID Experiments
3.1.1. Type A Devices
3.1.2. Type B Devices
3.2. Annealing Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rupp, R.; Laska, T.; Haberlen, O.; Treu, M. Application specific trade-offs for WBG SiC, GaN and high end si power switch technologies. IEDM Tech. Dig. 2014, 2–3. [Google Scholar] [CrossRef]
- Chen, K.J.; Hberlen, O.; Lidow, A.; Tsai, C.L.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si power technology: Devices and applications. IEEE Trans. Electron Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Wu, H.; Fu, X.; Guo, J.; Liu, T.; Wang, Y.; Luo, J.; Huang, Z.; Hu, S. Total ionizing dose and annealing effects on VTH shift for p-GaN Gate AlGaN/GaN MISHEMTs. IEEE Electron Device Lett. 2022, 43, 1945–1948. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, M.; Li, X.; Wu, X.; Yang, J.; Bao, M.; Yu, C.; Cao, F. Single-Event Burnout Hardness for the 4H-SiCTrench-Gate MOSFETs Based on the Multi-Island Buffer Layer. IEEE Trans. Electron Devices 2019, 66, 4264–4272. [Google Scholar] [CrossRef]
- Hariya, A.; Koga, T.; Matsuura, K.; Yanagi, H.; Tomioka, S.; Ishizuka, Y.; Ninomiya, T. Circuit design techniques for reducing the effects of magnetic flux on GaN-HEMTs in 5-MHz 100-W high power-density LLC resonant DC-DC converters. IEEE Trans. Power Electron. 2017, 53, 5953–5963. [Google Scholar] [CrossRef]
- Wei, J.; Xie, R.; Xu, H.; Wang, H.; Wang, Y.; Hua, M.; Zhong, K.; Tang, G.; He, J.; Zhang, M.; et al. Charge Storage Mechanism of Drain Induced Dynamic Threshold Voltage Shift in p-GaN Gate HEMTs. IEEE Trans. Electron Devices 2019, 40, 526–529. [Google Scholar] [CrossRef]
- Wu, H.; Fu, X.; Guo, J.; Wang, Y.; Liu, T.; Hu, S. Time-Resolved Threshold Voltage Instability of 650-V Schottky Type p-GaN Gate HEMT Under Temperature-Dependent Forward and Reverse Gate Bias Conditions. IEEE Trans. Electron Devices 2022, 69, 531–535. [Google Scholar] [CrossRef]
- Shi, Y.; Shao, D.; Feng, W.; Zhang, J.; Zhou, M. Silicon Interposer Package for MMIC Heterogeneous Integration Based on Gold/Solder Ball Flip-Chip Technique. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 1659–1662. [Google Scholar] [CrossRef]
- Udabe, A.; Baraia-Etxaburu, I.; Diez, D.G. Gallium Nitride Power Devices: A State of the Art Review. IEEE Access 2023, 11, 48628–48650. [Google Scholar] [CrossRef]
- Ajayan, J.; Nirmal, D.; Mohankumar, P.; Mounika, B.; Bhattacharya, S.; Tayal, S.; Augustine, A.S. Fletcher Challenges in material processing and reliability issues in AlGaN/GaN HEMTs on silicon wafers for future RF power electronics & switching applications: A critical review. Mater. Sci. Semicond. Process. 2022, 151, 106982. [Google Scholar] [CrossRef]
- Kozak, J.P.; Zhang, R.; Porter, M.; Song, Q.; Liu, J.; Wang, B.; Wang, R.; Saito, W.; Zhang, Y. Stability, Reliability, and Robustness of GaN Power Devices: A Review. IEEE Trans. Power Electron. 2023, 38, 8442–8471. [Google Scholar] [CrossRef]
- Mounika, B.; Ajayan, J.; Bhattacharya, S.; Nirmal, D. Recent developments in materials, architectures and processing of AlGaN/GaN HEMTs for future RF and power electronic applications: A critical review. Micro Nanostruct. 2022, 168, 207317. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Y.; Hu, K.; Yang, L.; Liang, K.; Xing, Z.; Wang, H.; Zhang, M.; Yu, H.; Fang, S.; et al. Boosted high-temperature electrical characteristics of AlGaN/GaN HEMTs with rationally designed compositionally graded AlGaN back barriers. Sci. China Inf. Sci. 2023, 66, 182405. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, H.; Yang, L.; Hu, K.; Xing, Z.; Liang, K.; Yu, H.; Fang, S.; Kang, Y.; Wang, D.; et al. Correlation Between Electrical Performance and Gate Width of GaN-Based HEMTs. IEEE Electron Device Lett. 2022, 43, 1199–1202. [Google Scholar] [CrossRef]
- Huang, S.; Wang, X.; Liu, X.; Li, Y.; Fan, J.; Yin, H.; Wei, K.; Zheng, Y.; Sun, Q.; Shen, B. Interface Charge Effects on 2-D Electron Gas in Vertical-Scaled Ultrathin-Barrier AlGaN/GaN Heterostructure. IEEE Trans. Electron Devices 2021, 68, 36–41. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, Z.; Yang, S.; Song, W.; He, J.; Chen, K.J. p-GaN gate HEMT with surface reinforcement for enhanced gate reliability. IEEE Electron Device Lett. 2021, 42, 22–25. [Google Scholar] [CrossRef]
- Tang, X.; Li, B.; Moghadam, H.A.; Tanner, P.; Han, J.; Dimitrijev, S. Mechanism of threshold voltage shift in p-GaN gate AlGaN/GaN transistor. IEEE Electron Device Lett. 2018, 39, 1145–1148. [Google Scholar] [CrossRef]
- Kawanago, T.; Kakushima, K.; Kataoka, Y.; Nishiyama, A.; Sugii, N.; Wakabayashi, H.; Tsutsui, K.; Natori, K.; Iwai, H. Gate technology contributions to collapse of drain current in AlGaN/GaN Schottky HEMT. IEEE Trans. Electron. Devices 2014, 61, 785–792. [Google Scholar] [CrossRef]
- Yang, F.; Wu, H.; Fu, X.; Xiang, F.; Xiang, F. A Radiation-Hardened Trench Power MOSFET for Aerospace Applications. In Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 26–30 October 2018. [Google Scholar]
- Oka, T.; Nozawa, T. AlGaN/GaN recessed MIS-gate HFET with high-threshold voltage normally-off operation for power electronics applications. IEEE Electron Device Lett. 2008, 29, 668–670. [Google Scholar] [CrossRef]
- Sun, X.; Saadat, O.I.; Chen, J.; Zhang, E.X.; Cui, S.; Palacios, T.; Fleetwood, D.M.; Ma, T.P. Total-Ionizing-Dose Radiation Effects in AlGaN/GaN HEMTs and MOS-HEMTs. IEEE Trans. Nucl. Sci. 2013, 60, 4074–4079. [Google Scholar] [CrossRef]
- Puzyrev, Y.S.; Roy, T.; Zhang, E.X.; Fleetwood, D.M.; Schrimpf, R.D.; Pantelides, S.T. Radiation-Induced Defect Evolution and Electrical Degradation of AlGaN/GaN High-Electron-Mobility Transistors. IEEE Trans. Nucl. Sci. 2011, 58, 918–2924. [Google Scholar] [CrossRef]
- McWhorter, P.J.; Miller, S.L.; Miller, W.M. Modeling the anneal of radiation-induced trapped holes in a varying thermal environment. IEEE Trans. Nucl. Sci. 1990, 37, 1682–1689. [Google Scholar] [CrossRef]
BV | Vth | RON | |
---|---|---|---|
Pre-TID | 710 V | +3.0 V | 0.13 Ω |
50 krad(Si) | 710 V | +1.2 V | 0.13 Ω |
100 krad(Si) | - | <0 V | - |
Dose/rad(Si) | BV/V | Vth/V | RON/Ω | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Individual Device | Std | Ave | ||||||||
Pre-TID | 710 | 3.525 | 3.623 | 3.486 | 3.690 | 3.743 | 3.598 | 0.072 | 3.6 | 0.13 |
3.598 | 3.612 | 3.546 | 3.662 | 3.686 | 3.558 | |||||
50 k | 710 | 3.340 | 3.446 | 3.285 | 3.267 | 3.499 | 3.524 | 0.082 | 3.4 | 0.13 |
3.382 | 3.396 | 3.343 | 3.480 | 3.496 | 3.374 | |||||
100 k | 710 | 2.986 | 3.074 | 2.980 | 2.876 | 3.227 | 3.328 | 0.122 | 3.1 | 0.13 |
3.050 | 3.058 | 2.994 | 3.129 | 3.220 | 3.027 | |||||
150 k | 710 | 2.576 | 2.725 | 2.556 | 2.552 | 2.794 | 2.827 | 0.089 | 2.7 | 0.14 |
2.681 | 2.723 | 2.628 | 2.753 | 2.755 | 2.665 | |||||
200 k | 710 | 2.085 | 2.242 | 2.052 | 1.909 | 2.345 | 2.533 | 0.149 | 2.2 | 0.14 |
2.189 | 2.198 | 2.175 | 2.242 | 2.296 | 2.182 | |||||
250 k | 710 | 1.820 | 1.901 | 1.187 | 1.794 | 2.033 | 2.047 | 0.214 | 1.9 | 0.15 |
1.896 | 1.896 | 1.824 | 1.952 | 1.983 | 1.834 | |||||
300 k | 710 | 1.341 | 1.57 | 1.319 | 1.107 | 1.658 | 1.850 | 0.110 | 1.5 | 0.15 |
1.481 | 1.522 | 1.415 | 1.644 | 1.647 | 1.433 | |||||
350 k | 710 | 0.906 | 1.11 | 0.878 | 0.870 | 1.153 | 1.191 | 0.180 | 1.0 | 0.15 |
1.032 | 1.052 | 0.913 | 1.112 | 1.133 | 0.985 | |||||
400 k | 708 | 0.644 | 0.858 | 0.616 | 0.563 | 0.968 | 1.236 | 0.134 | 0.8 | 0.16 |
0.799 | 0.846 | 0.650 | 0.892 | 0.910 | 0.703 | |||||
450 k | 708 | 0.249 | 0.388 | 0.223 | 0.150 | 0.486 | 0.496 | 0.072 | 0.3 | 0.16 |
0.323 | 0.358 | 0.275 | 0.429 | 0.430 | 0.286 | |||||
500 k | - | <0 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Fu, X.; Luo, J.; Yang, M.; Yang, X.; Huang, W.; Zhang, H.; Xiang, F.; Pu, Y.; Wang, Z. Total Ionizing Dose Effects on the Threshold Voltage of GaN Cascode Devices. Micromachines 2023, 14, 1832. https://doi.org/10.3390/mi14101832
Wu H, Fu X, Luo J, Yang M, Yang X, Huang W, Zhang H, Xiang F, Pu Y, Wang Z. Total Ionizing Dose Effects on the Threshold Voltage of GaN Cascode Devices. Micromachines. 2023; 14(10):1832. https://doi.org/10.3390/mi14101832
Chicago/Turabian StyleWu, Hao, Xiaojun Fu, Jun Luo, Manlin Yang, Xiaoyu Yang, Wei Huang, Huan Zhang, Fan Xiang, Yang Pu, and Ziwei Wang. 2023. "Total Ionizing Dose Effects on the Threshold Voltage of GaN Cascode Devices" Micromachines 14, no. 10: 1832. https://doi.org/10.3390/mi14101832
APA StyleWu, H., Fu, X., Luo, J., Yang, M., Yang, X., Huang, W., Zhang, H., Xiang, F., Pu, Y., & Wang, Z. (2023). Total Ionizing Dose Effects on the Threshold Voltage of GaN Cascode Devices. Micromachines, 14(10), 1832. https://doi.org/10.3390/mi14101832