Editorial for the Special Issue on Piezoelectric Transducers: Materials, Devices and Applications, Volume III
Conflicts of Interest
References
- Uchino, K. Advanced Piezoelectric Materials; Woodhead Publishing: Sawston, UK, 2017. [Google Scholar] [CrossRef]
- Rupitsch, S.J. Piezoelectric Sensors and Actuators; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Bhugra, H.; Piazza, G. Piezoelectric MEMS Resonators; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, M.; Shirvanimoghaddam, K.; Abolhasani, M.M.; Farhangi, M.; Barsari, V.Z.; Liu, H.; Naebe, M. Towards a Green and Self-Powered Internet of Things Using Piezoelectric Energy Harvesting. IEEE Access 2019, 7, 94533–94556. [Google Scholar] [CrossRef]
- Charthad, J.; Chang, T.C.; Liu, Z.; Sawaby, A.; Weber, M.J.; Baker, S.; Arbabian, A. A mm-Sized Wireless Implantable Device for Electrical Stimulation of Peripheral Nerves. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Liu, W.; Yang, C.; Huang, T.; Hou, Z.-G.; Tan, M. A Neural-Network-Based Controller for Piezoelectric-Actuated Stick–Slip Devices. IEEE Trans. Ind. Electron. 2018, 65, 2598–2607. [Google Scholar] [CrossRef]
- Weber, M.J.; Yoshihara, Y.; Sawaby, A.; Charthad, J.; Chang, T.C.; Arbabian, A. A Miniaturized Single-Transducer Implantable Pressure Sensor with Time-Multiplexed Ultrasonic Data and Power Links. IEEE J. Solid-State Circuits 2018, 53, 1089–1101. [Google Scholar] [CrossRef]
- Hagelauer, A.; Fattinger, G.; Ruppel, C.C.W.; Ueda, M.; Hashimoto, K.-Y.; Tag, A. Microwave Acoustic Wave Devices: Recent Advances on Architectures, Modeling, Materials, and Packaging. IEEE Trans. Microw. Theory Tech. 2018, 66, 4548–4562. [Google Scholar] [CrossRef]
- He, T.; Lee, C. Evolving Flexible Sensors, Wearable and Implantable Technologies towards BodyNET for Advanced Healthcare and Reinforced Life Quality. IEEE Open J. Circuits Syst. 2021, 2, 702–720. [Google Scholar] [CrossRef]
- Liseli, J.B.; Agnus, J.; Lutz, P.; Rakotondrabe, M. An Overview of Piezoelectric Self-Sensing Actuation for Nanopositioning Applications: Electrical Circuits, Displacement, and Force Estimation. IEEE Trans. Instrum. Meas. 2020, 69, 2–14. [Google Scholar] [CrossRef]
- Jin, H.; Gao, X.; Ren, K.; Liu, J.; Qiao, L.; Liu, M.; Li, F. Review on Piezoelectric Actuators Based on High-Performance Piezoelectric Materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2022, 69, 3057–3069. [Google Scholar] [CrossRef]
- Mashimo, T.; Izuhara, S. Review: Recent Advances in Micromotors. IEEE Access 2020, 8, 213489–213501. [Google Scholar] [CrossRef]
- Pinto, R.M.R.; Gund, V.; Dias, R.A.; Nagaraja, K.K.; Vinayakumar, K.B. CMOS-Integrated Aluminum Nitride MEMS: A Review. J. Microelectromech. Syst. 2022, 31, 500–523. [Google Scholar] [CrossRef]
- Sawane, M.; Prasad, M. MEMS piezoelectric sensor for self-powered devices: A review. Mater. Sci. Semicond. Process. 2023, 158, 107324. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Ta, Q.T.H.; Tran, N. Review on the transformation of biomechanical energy to green energy using triboelectric and piezoelectric based smart materials. J. Clean. Prod. 2022, 371, 133702. [Google Scholar] [CrossRef]
- Ryndzionek, R.; Sienkiewicz, Ł. A review of recent advances in the single- and multi-degree-of-freedom ultrasonic piezoelectric motors. Ultrasonics 2021, 116, 106471. [Google Scholar] [CrossRef] [PubMed]
- An, D.; Li, J.; Li, S.; Shao, M.; Wang, W.; Wang, C.; Yang, Y. Compensation Method for the Nonlinear Characteristics with Starting Error of a Piezoelectric Actuator in Open-Loop Controls Based on the DSPI Model. Micromachines 2023, 14, 742. [Google Scholar] [CrossRef]
- Zhu, K.; Ma, J.; Liu, Y.; Shen, B.; Huo, D.; Yang, Y.; Qi, X.; Sun, E.; Zhang, R. Increasing Performances of 1–3 Piezocomposite Ultrasonic Transducer by Alternating Current Poling Method. Micromachines 2022, 13, 1715. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Wang, L.; Liu, Y.; Chen, H.; Wu, Z. Process Control Monitor (PCM) for Simultaneous Determination of the Piezoelectric Coefficients d31 and d33 of AlN and AlScN Thin Films. Micromachines 2022, 13, 581. [Google Scholar] [CrossRef]
- Rabih, A.A.S.; Kazemi, M.; Ménard, M.; Nabki, F. Aluminum Nitride Out-of-Plane Piezoelectric MEMS Actuators. Micromachines 2023, 14, 700. [Google Scholar] [CrossRef]
- Ruiz-Díez, V.; Ababneh, A.; Seidel, H.; Sánchez-Rojas, J.L. Design and Characterization of a Planar Micro-Conveyor Device Based on Cooperative Legged Piezoelectric MEMS Resonators. Micromachines 2022, 13, 1202. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Zhao, H.; Wang, J.; Du, S.; Guo, X.; Sun, H. Temperature Characteristic Analysis of Electromagnetic Piezoelectric Hybrid Drive Motor. Micromachines 2022, 13, 967. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, H.; Chen, X.; Du, S.; Guo, X.; Sun, H. Structural Design and Analysis of Hybrid Drive Multi-Degree-of-Freedom Motor. Micromachines 2022, 13, 955. [Google Scholar] [CrossRef]
- Robles-Cuenca, D.; Ramírez-Palma, M.R.; Ruiz-Díez, V.; Hernando-García, J.; Sánchez-Rojas, J.L. Miniature Autonomous Robot Based on Legged In-Plane Piezoelectric Resonators with Onboard Power and Control. Micromachines 2022, 13, 1815. [Google Scholar] [CrossRef] [PubMed]
- He, W. A Piezoelectric Heterostructure Scavenging Mechanical Energy from Human Foot Strikes. Micromachines 2022, 13, 1353. [Google Scholar] [CrossRef] [PubMed]
- Bouhedma, S.; Hu, S.; Schütz, A.; Lange, F.; Bechtold, T.; Ouali, M.; Hohlfeld, D. Analysis and Characterization of Optimized Dual-Frequency Vibration Energy Harvesters for Low-Power Industrial Applications. Micromachines 2022, 13, 1078. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Cretu, E. A Polymeric Piezoelectric Tactile Sensor Fabricated by 3D Printing and Laser Micromachining for Hardness Differentiation during Palpation. Micromachines 2022, 13, 2164. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xia, P.; Liu, J.; Fang, Z.; Du, L.; Zhao, Z. Polyimide-Based High-Performance Film Bulk Acoustic Resonator Humidity Sensor and Its Application in Real-Time Human Respiration Monitoring. Micromachines 2022, 13, 758. [Google Scholar] [CrossRef]
- Ren, D.; Yin, Y.; Li, C.; Chen, R.; Shi, J. Recent Advances in Flexible Ultrasonic Transducers: From Materials Optimization to Imaging Applications. Micromachines 2023, 14, 126. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Rojas, J.L. Editorial for the Special Issue on Piezoelectric Transducers: Materials, Devices and Applications, Volume III. Micromachines 2023, 14, 1862. https://doi.org/10.3390/mi14101862
Sanchez-Rojas JL. Editorial for the Special Issue on Piezoelectric Transducers: Materials, Devices and Applications, Volume III. Micromachines. 2023; 14(10):1862. https://doi.org/10.3390/mi14101862
Chicago/Turabian StyleSanchez-Rojas, Jose Luis. 2023. "Editorial for the Special Issue on Piezoelectric Transducers: Materials, Devices and Applications, Volume III" Micromachines 14, no. 10: 1862. https://doi.org/10.3390/mi14101862
APA StyleSanchez-Rojas, J. L. (2023). Editorial for the Special Issue on Piezoelectric Transducers: Materials, Devices and Applications, Volume III. Micromachines, 14(10), 1862. https://doi.org/10.3390/mi14101862