Simulation-Based Analysis of the Effect of Alpha Irradiation on GaN Particle Detectors
Abstract
:1. Introduction
2. Device Fabrication and Model
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, Y.; Shen, Y.; Sun, X.; Shi, Z.; Jiang, K.; Wu, T.; Liang, H.; Cui, X.; Lü, W.; Li, D. Improved performance of SiC radiation detector based on metal-insulator-semiconductor structures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 997, 165166. [Google Scholar] [CrossRef]
- Chaudhuri, S.K.; Karadavut, O.; Kleppinger, J.W.; Mandal, K.C. High-resolution radiation detection using Ni/SiO2/n-4H-SiC vertical metal-oxide-semiconductor capacitor. J. Appl. Phys. 2021, 130, 074501. [Google Scholar] [CrossRef]
- Maity, A.; Grenadier, S.J.; Li, J.; Lin, J.Y.; Jiang, H.X. High sensitivity hexagonal boron nitride lateral neutron detectors. Appl. Phys. Lett. 2019, 114, 222102. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Q.; Guo, L.; Hao, S.; Zhou, D.; Xu, W.; Zhang, B.; Yang, F.; Ren, F.; Chen, D.; et al. High Resolution 4H-SiC p-i-n Radiation Detectors with Low-Voltage Operation. IEEE Electron Device Lett. 2022, 43, 2161–2164. [Google Scholar] [CrossRef]
- Geng, X.; Xia, X.; Cui, X.; Huang, H.; Liang, X.; Yan, D.; Tian, K.; Chen, L.; Yan, X.; Long, Z.; et al. Enhanced Energy Resolution of GaN-on-Sapphire p-i-n Alpha-Particle Detector with Isoelectronic Al-Doped i-GaN Layer. IEEE Trans. Nucl. Sci. 2021, 68, 2301–2308. [Google Scholar] [CrossRef]
- Polyakov, A.Y.; Smirnov, N.B.; Govorkov, A.V.; Markov, A.V.; Kozhukhova, E.A.; Gazizov, I.M.; Kolin, N.G.; Merkurisov, D.I.; Boiko, V.M.; Korulin, A.V.; et al. Alpha particle detection with GaN Schottky diodes. J. Appl. Phys. 2009, 106, 103708. [Google Scholar] [CrossRef]
- Wang, J.; Mulligan, P.; Brillson, L.; Cao, L.R. Review of using gallium nitride for ionizing radiation detection. Appl. Phys. Rev. 2015, 2, 031102. [Google Scholar] [CrossRef]
- Vaitkus, J.; Cunningham, W.; Gaubas, E.; Rahman, M.; Sakai, S.; Smith, K.M.; Wang, T. Semi-insulating GaN and its evaluation for α particle detection. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 509, 60–64. [Google Scholar] [CrossRef]
- Grant, J.; Bates, R.; Cunningham, W.; Blue, A.; Melone, J.; McEwan, F.; Vaitkus, J.; Gaubas, E.; O’Shea, V. GaN as a radiation hard particle detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 576, 60–65. [Google Scholar] [CrossRef]
- Owens, A.; Barnes, A.; Farley, R.A.; Germain, M.; Sellin, P.J. GaN detector development for particle and X-ray detection. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2012, 695, 303–305. [Google Scholar] [CrossRef]
- Gao, F.; Chen, N.; Huang, D.; Heller, E.R.; LeVan, P.D. Atomic-level based non-ionizing energy loss: An application to GaAs and GaN semiconductor materials. In Proceedings of the Infrared Sensors, Devices, and Applications VIII, San Diego, CA, USA, 22–23 August 2018. [Google Scholar]
- Velthuis, J.J.; Mathes, M.; Kagan, H.; Cristinziani, M.; Reuen, L.; Smith, S.; Trischuk, W.; Wermes, N. Radiation hard diamond pixel detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2008, 591, 221–223. [Google Scholar] [CrossRef]
- Sandupatla, A.; Arulkumaran, S.; Ranjan, K.; Ng, G.I.; Murmu, P.P.; Kennedy, J.; Nitta, S.; Honda, Y.; Deki, M.; Amano, H. Low Voltage High-Energy α-Particle Detectors by GaN-on-GaN Schottky Diodes with Record-High Charge Collection Efficiency. Sensors 2019, 19, 5107. [Google Scholar] [CrossRef]
- Xu, Q.; Mulligan, P.; Wang, J.; Chuirazzi, W.; Cao, L. Bulk GaN alpha-particle detector with large depletion region and improved energy resolution. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 849, 11–15. [Google Scholar] [CrossRef]
- Lee, I.-H.; Polyakov, A.Y.; Smirnov, N.B.; Govorkov, A.V.; Kozhukhova, E.A.; Zaletin, V.M.; Gazizov, I.M.; Kolin, N.G.; Pearton, S.J. Electrical properties and radiation detector performance of free-standing bulk n-GaN. J. Vac. Sci. Technol. B 2012, 30, 021205. [Google Scholar] [CrossRef]
- Sandupatla, A.; Arulkumaran, S.; Ing, N.G.; Nitta, S.; Kennedy, J.; Amano, H. Vertical GaN-on-GaN Schottky Diodes as α-Particle Radiation Sensors. Micromachines 2020, 11, 519. [Google Scholar] [CrossRef]
- Hernández-Gutiérrez, C.A.; Casallas-Moreno, Y.L.; Cardona, D.; Kudriavtsev, Y.; Santana-Rodríguez, G.; Mendoza-Pérez, R.; Contreras-Puente, G.; Mendez-Garcia, V.H.; Gallardo-Hernández, S.; Quevedo-Lopez, M.A.; et al. Characterization of n-GaN / p-GaAs NP heterojunctions. Superlattices Microstruct. 2019, 136, 106298. [Google Scholar] [CrossRef]
- Sugiura, M.; Kushimoto, M.; Mitsunari, T.; Yamashita, K.; Honda, Y.; Amano, H.; Inoue, Y.; Mimura, H.; Aoki, T.; Nakano, T. Study of radiation detection properties of GaN pn diode. Jpn. J. Appl. Phys. 2016, 55, 05FJ02. [Google Scholar] [CrossRef]
- Wang, J.; Mulligan, P.L.; Cao, L.R. Transient current analysis of a GaN radiation detector by TCAD. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 761, 7–12. [Google Scholar] [CrossRef]
- Karmarkar, A.P.; Bongim, J.; Fleetwood, D.M.; Schrimpf, R.D.; Weller, R.A.; White, B.D.; Brillson, L.J.; Mishra, U.K. Proton irradiation effects on GaN-based high electron-mobility transistors with Si-doped AlxGa1-xN and thick GaN cap Layers. IEEE Trans. Nucl. Sci. 2004, 51, 3801–3806. [Google Scholar] [CrossRef]
- Keum, D.; Cho, G.; Kim, H. Degradation Characteristics of AlGaN/GaN MOS-Heterostructure FETs by Alpha-Particle Irradiation. ECS J. Solid State Sci. Technol. 2017, 6, S3030–S3033. [Google Scholar] [CrossRef]
- Fares, C.; Ren, F.; Pearton, S.J.; Yang, G.; Kim, J.; Lo, C.-F.; Wayne Johnson, J. Effect of alpha-particle irradiation dose on SiNx/AlGaN/GaN metal-insulator semiconductor high electron mobility transistors. J. Vac. Sci. Technol. B 2018, 36, 041203. [Google Scholar] [CrossRef]
- Vitusevich, S.A.; Kurakin, A.M.; Konakova, R.V.; Belyaev, A.E.; Klein, N. Improvement of interface properties of AlGaN/GaN heterostructures under gamma-radiation. Appl. Surf. Sci. 2008, 255, 784–786. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM-The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Stoller, R.E.; Toloczko, M.B.; Was, G.S.; Certain, A.G.; Dwaraknath, S.; Garner, F.A. On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 310, 75–80. [Google Scholar] [CrossRef]
- Messenger, S.R.; Burke, E.A.; Summers, G.P.; Xapsos, M.A.; Walters, R.J.; Jackson, E.M.; Weaver, B.D. Nonionizing energy loss (NIEL) for heavy ions. IEEE Trans. Nucl. Sci. 1999, 46, 1595–1602. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Guo, H.; Yu, C.; Hu, H.; Liu, Y.; Chen, S. Transient Current Analysis of Silicon Carbide Neutron Detector Using SRIM and TCAD. IEEE Sens. J. 2022, 22, 10620–10629. [Google Scholar] [CrossRef]
- Shao, Z.G.; Chen, D.J.; Lu, H.; Zhang, R.; Cao, D.P.; Luo, W.J.; Zheng, Y.D.; Li, L.; Li, Z.H. High-Gain AlGaN Solar-Blind Avalanche Photodiodes. IEEE Electron Device Lett. 2014, 35, 372–374. [Google Scholar] [CrossRef]
- Osheroff, J.M.; Lauenstein, J.-M.; Ladbury, R.L. LET and Range Characteristics of Proton Recoil Ions in Gallium Nitride (GaN). IEEE Trans. Nucl. Sci. 2021, 68, 597–602. [Google Scholar] [CrossRef]
- Mulligan, P.; Wang, J.; Cao, L. Evaluation of freestanding GaN as an alpha and neutron detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 719, 13–16. [Google Scholar] [CrossRef]
- Shim, H.E.; Park, J.; Yeon, Y.H.; Lee, N.; Gwon, H.-J. Prediction of radiation-induced degradation for a FAPbBr3 perovskite solar cell. J. Korean Phys. Soc. 2022, 80, 191–196. [Google Scholar] [CrossRef]
- Akkerman, A.; Barak, J.; Murat, M. A Survey of the Analytical Methods of Proton-NIEL Calculations in Silicon and Germanium. IEEE Trans. Nucl. Sci. 2020, 67, 1813–1825. [Google Scholar] [CrossRef]
- Messenger, S.R.; Walters, R.J.; Burke, E.A.; Summers, G.P.; Xapsos, M.A. NIEL and Damage Correlations for High-Energy Protons in Gallium Arsenide Devices. IEEE Trans. Nucl. Sci. 2001, 48, 2121–2126. [Google Scholar] [CrossRef]
- Omotoso, E.; Meyer, W.E.; Auret, F.D.; Diale, M.; Ngoepe, P.N.M. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences. Phys. B Condens. Matter 2016, 480, 196–200. [Google Scholar] [CrossRef]
- Polyakov, A.Y.; Smirnov, N.B.; Shchemerov, I.V.; Yakimov, E.B.; Pearton, S.J.; Fares, C.; Yang, J.; Ren, F.; Kim, J.; Lagov, P.B.; et al. Defects responsible for charge carrier removal and correlation with deep level introduction in irradiated β-Ga2O3. Appl. Phys. Lett. 2018, 113, 092102. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Density of states Nc (cm−3) | 2.24 × 1018 |
Density of states Nv (cm−3) | 2.51 × 1019 |
Intrinsic carrier concentration ni (cm−3) | 1.06 × 10−10 |
Lifetime (electron) | 1.0 × 10−9 |
Lifetime (hole) | 1.0 × 10−9 |
Effective mass (electron) | 0.2 |
Effective mass (hole) | 1.0 |
Saturation velocity (electron) (cm/s) | 1.91 × 107 |
Saturation velocity (hole) (cm/s) | 1.0 × 106 |
Energy Loss (%) | Ions | Recoils |
---|---|---|
Ionization | 99.70 | 0.06 |
Vacancies | 0.00 | 0.01 |
Phonons | 0.03 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, J.; Wang, N.; Jiang, R.; Hou, Q. Simulation-Based Analysis of the Effect of Alpha Irradiation on GaN Particle Detectors. Micromachines 2023, 14, 1872. https://doi.org/10.3390/mi14101872
Lei J, Wang N, Jiang R, Hou Q. Simulation-Based Analysis of the Effect of Alpha Irradiation on GaN Particle Detectors. Micromachines. 2023; 14(10):1872. https://doi.org/10.3390/mi14101872
Chicago/Turabian StyleLei, Jianming, Nan Wang, Rukai Jiang, and Qianyu Hou. 2023. "Simulation-Based Analysis of the Effect of Alpha Irradiation on GaN Particle Detectors" Micromachines 14, no. 10: 1872. https://doi.org/10.3390/mi14101872
APA StyleLei, J., Wang, N., Jiang, R., & Hou, Q. (2023). Simulation-Based Analysis of the Effect of Alpha Irradiation on GaN Particle Detectors. Micromachines, 14(10), 1872. https://doi.org/10.3390/mi14101872