A Hybrid Data-Driven Metaheuristic Framework to Optimize Strain of Lattice Structures Proceeded by Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Optimization of the Sea Urchin Structure
3.2. Optimization of the Honeycomb Structure
3.3. Optimization of the Kelvin Simple 2 × 2 Structure
3.4. Optimization of the Kelvin Round 2 × 2 Structure
3.5. Optimization of Kelvin Cross Bar 2 × 2 Structure
4. Conclusions
- −
- For the sea urchin structure, the developed model suggests the optimal stress (11.9 MPa), unit cell size (11.4 mm), total height (42.5 mm), breadth (8.7 mm), width (17.29 mm), and relative density (6.67%) for a strain value of 2.8 × 10−6 mm/mm.
- −
- For the honeycomb structure, the proposed model finds the optimal stress (12 MPa), unit cell size (1.5 mm), total height (37.3 mm), breadth (33.69 mm), width (69.89 mm), and relative density (5.18%) for a strain value of 6.5 × 10−6 mm/mm.
- −
- For the Kelvin simple (2 × 2) structure, the developed model suggests the optimal stress (4.15 MPa), unit cell size (18.6 mm), total height (28.5 mm), breadth (24.32 mm), width (68.12 mm), and relative density (6.12%) for a strain value of 1.7 × 10−5 mm/mm.
- −
- For the Kelvin round (2 × 2) structure, the proposed model finds the optimal stress (9.2 MPa), unit cell size (8.9 mm), total height (24.3 mm), breadth (38.5 mm), width (67.32 mm), and relative density (5.007%) for a strain value of 6.1 × 10−6 mm/mm.
- −
- For the Kelvin cross bar (2 × 2) structure, the developed model suggests the optimal stress (17.99 MPa), unit cell size (20.06 mm), total height (54.8 mm), breadth (51.7 mm), width (59.7 mm), and relative density (9.89%) for a strain value of 6.2 × 10−6 mm/mm.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sajjad, U.; Rehman, T.-U.; Ali, M.; Park, C.W.; Yan, W.-M. Manufacturing and potential applications of lattice structures in thermal systems: A comprehensive review of recent advances. Int. J. Heat Mass Transf. 2022, 198, 123352. [Google Scholar] [CrossRef]
- Hanks, B.; Berthel, J.; Frecker, M.; Simpson, T.W. Mechanical properties of additively manufactured metal lattice structures: Data review and design interface. Addit. Manuf. 2020, 35, 101301. [Google Scholar] [CrossRef]
- Schaedler, T.A.; Carter, W.B. Architected cellular materials. Annu. Rev. Mater. Res. 2016, 46, 187–210. [Google Scholar] [CrossRef]
- Helou, M.; Kara, S. Design, analysis and manufacturing of lattice structures: An overview. Int. J. Comput. Integr. Manuf. 2018, 31, 243–261. [Google Scholar] [CrossRef]
- Nguyen, D.S.; Vignat, F. A method to generate lattice structure for additive manufacturing. In Proceedings of the 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Bali, Indonesia, 4–7 December 2016. [Google Scholar]
- Sun, S.; Li, D.; Yang, C.; Fu, L.; Kong, D.; Lu, Y.; Guo, Y.; Liu, D.; Guan, P.; Zhang, Z. Direct atomic-scale observation of ultrasmall Ag nanowires that exhibit fcc, bcc, and hcp structures under bending. Phys. Rev. Lett. 2022, 128, 015701. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Zeng, Z.; Zhou, H.; He, J.; Liu, P.; Chen, M.; Han, J.; Srolovitz, D.J.; Teng, J. Tracking the sliding of grain boundaries at the atomic scale. Science 2022, 375, 1261–1265. [Google Scholar] [CrossRef]
- Fang, J.; Wang, J.; Wang, Y.; He, H.; Zhang, D.; Cao, Y. Microstructure evolution and deformation behavior during stretching of a compositionally inhomogeneous TWIP-TRIP cantor-like alloy by laser powder deposition. Mater. Sci. Eng. A 2022, 847, 143319. [Google Scholar] [CrossRef]
- Liao, D.; Zhu, S.-P.; Keshtegar, B.; Qian, G.; Wang, Q. Probabilistic framework for fatigue life assessment of notched components under size effects. Int. J. Mech. Sci. 2020, 181, 105685. [Google Scholar] [CrossRef]
- Niu, X.; Zhu, S.-P.; He, J.-C.; Liao, D.; Correia, J.A.; Berto, F.; Wang, Q. Defect tolerant fatigue assessment of AM materials: Size effect and probabilistic prospects. Int. J. Fatigue 2022, 160, 106884. [Google Scholar] [CrossRef]
- He, J.-C.; Zhu, S.-P.; Luo, C.; Niu, X.; Wang, Q. Size effect in fatigue modelling of defective materials: Application of the calibrated weakest-link theory. Int. J. Fatigue 2022, 165, 107213. [Google Scholar] [CrossRef]
- Mahmoud, D.; Elbestawi, M.A. Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: A review. J. Manuf. Mater. Process. 2017, 1, 13. [Google Scholar] [CrossRef]
- Robbins, J.; Owen, S.; Clark, B.; Voth, T. An efficient and scalable approach for generating topologically optimized cellular structures for additive manufacturing. Addit. Manuf. 2016, 12, 296–304. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.; Shin, Y.C.; Zhang, S.; Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering. Comput.-Aided Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 2016, 83, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Niu, W.; Li, Z.; Shen, C.; Zhang, J.; Yu, S.; Chi, N. Optimal adaptive waveform design utilizing an end-to-end learning-based pre-equalization neural network in an UVLC system. J. Light. Technol. 2022, 41, 1626–1636. [Google Scholar] [CrossRef]
- Xu, J.; Pan, S.; Sun, P.Z.; Park, S.H.; Guo, K. Human-factors-in-driving-loop: Driver identification and verification via a deep learning approach using psychological behavioral data. IEEE Trans. Intell. Transp. Syst. 2022, 24, 3383–3394. [Google Scholar] [CrossRef]
- Zheng, Y.; Lv, X.; Qian, L.; Liu, X. An optimal bp neural network track prediction method based on a ga–aco hybrid algorithm. J. Mar. Sci. Eng. 2022, 10, 1399. [Google Scholar] [CrossRef]
- Bao, N.; Zhang, T.; Huang, R.; Biswal, S.; Su, J.; Wang, Y. A deep transfer learning network for structural condition identification with limited real-world training data. Struct. Control Health Monit. 2023, 2023, 8899806. [Google Scholar] [CrossRef]
- Qian, L.; Zheng, Y.; Li, L.; Ma, Y.; Zhou, C.; Zhang, D. A new method of inland water ship trajectory prediction based on long short-term memory network optimized by genetic algorithm. Appl. Sci. 2022, 12, 4073. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, D.; Zhou, S.; Zhang, J.; Lin, Y. Flight trajectory prediction enabled by time-frequency wavelet transform. Nat. Commun. 2023, 14, 5258. [Google Scholar] [CrossRef]
- Cao, B.; Zhao, J.; Yang, P.; Gu, Y.; Muhammad, K.; Rodrigues, J.J.; de Albuquerque, V.H.C. Multiobjective 3-D topology optimization of next-generation wireless data center network. IEEE Trans. Ind. Inform. 2019, 16, 3597–3605. [Google Scholar] [CrossRef]
- Huang, H.; Xue, C.; Zhang, W.; Guo, M. Torsion design of CFRP-CFST columns using a data-driven optimization approach. Eng. Struct. 2022, 251, 113479. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, H.; Hou, J.; Hamzaoui, R.; Gao, W. Pufa-gan: A frequency-aware generative adversarial network for 3d point cloud upsampling. IEEE Trans. Image Process. 2022, 31, 7389–7402. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Wang, H.; Qu, R. A Novel Data Generation and Quantitative Characterization Method of Motor Static Eccentricity with Adversarial Network. IEEE Trans. Power Electron. 2023, 38, 8027–8032. [Google Scholar] [CrossRef]
- Ghungrad, S.; Gould, B.; Soltanalian, M.; Wolff, S.J.; Haghighi, A. Model-based deep learning for additive manufacturing: New frontiers and applications. Manuf. Lett. 2021, 29, 94–98. [Google Scholar] [CrossRef]
- Zhang, L.; Bibi, F.; Hussain, I.; Sultan, M.; Arshad, A.; Hasnain, S.; Alarifi, I.M.; Alamir, M.A.; Sajjad, U. Evaluating the stress-strain relationship of the additively manufactured lattice structures. Micromachines 2022, 14, 75. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Sajjad, U.; Hussain, I.; Abbas, N.; Ali, H.M.; Yan, W.-M.; Wang, C.-C. On the assessment of the mechanical properties of additively manufactured lattice structures. Eng. Anal. Bound. Elem. 2022, 142, 93–116. [Google Scholar] [CrossRef]
- Li, L.; Anand, S. Hatch pattern based inherent strain prediction using neural networks for powder bed fusion additive manufacturing. J. Manuf. Process. 2020, 56, 1344–1352. [Google Scholar] [CrossRef]
- Zhu, Z.; Ferreira, K.; Anwer, N.; Mathieu, L.; Guo, K.; Qiao, L. Convolutional neural network for geometric deviation prediction in additive manufacturing. Procedia Cirp 2020, 91, 534–539. [Google Scholar] [CrossRef]
- Sajjad, U.; Hussain, I.; Hamid, K.; Ali, H.M.; Wang, C.-C.; Yan, W.-M. Liquid-to-vapor phase change heat transfer evaluation and parameter sensitivity analysis of nanoporous surface coatings. Int. J. Heat Mass Transf. 2022, 194, 123088. [Google Scholar] [CrossRef]
- Rajak, N.; Kaimkuriya, A. Design and Development of Honeycomb Structure for Additive Manufacturing. Int. J. Trend Sci. Res. Dev. 2018, 2, 1198–1203. [Google Scholar] [CrossRef]
- Prajapati, M.J.; Kumar, A.; Lin, S.-C.; Jeng, J.-Y. Multi-material additive manufacturing with lightweight closed-cell foam-filled lattice structures for enhanced mechanical and functional properties. Addit. Manuf. 2022, 54, 102766. [Google Scholar] [CrossRef]
- Arshad, A.; Nazir, A.; Jeng, J.-Y. The effect of fillets and crossbars on mechanical properties of lattice structures fabricated using additive manufacturing. Int. J. Adv. Manuf. Technol. 2020, 111, 931–943. [Google Scholar] [CrossRef]
- Duan, Y.; Du, B.; Shi, X.; Hou, B.; Li, Y. Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with Kelvin cells. Int. J. Impact Eng. 2019, 132, 103303. [Google Scholar] [CrossRef]
- Płatek, P.; Sienkiewicz, J.; Janiszewski, J.; Jiang, F. Investigations on Mechanical Properties of Lattice Structures with Different Values of Relative Density Made from 316L by Selective Laser Melting (SLM). Materials 2020, 13, 2204. [Google Scholar] [CrossRef]
- Latture, R.; Rodriguez, R.; Holmes, L.; Zok, F. Effects of nodal fillets and external boundaries on compressive response of an octet truss. Acta Mater. 2018, 149, 78–87. [Google Scholar] [CrossRef]
- Kumar, A.; Collini, L.; Daurel, A.; Jeng, J.-Y. Design and additive manufacturing of closed cells from supportless lattice structure. Addit. Manuf. 2020, 33, 101168. [Google Scholar] [CrossRef]
- Jang, W.-Y.; Kyriakides, S.; Kraynik, A.M. On the compressive strength of open-cell metal foams with Kelvin and random cell structures. Int. J. Solids Struct. 2010, 47, 2872–2883. [Google Scholar] [CrossRef]
Input Parameters | Minimum | Maximum |
---|---|---|
Stress (MPa) | 0 | 342.32 |
Unit cell size (mm) | 1.5 | 25 |
Total height (mm) | 7 | 75 |
Breadth (mm) | 7 | 75 |
Width (mm) | 7 | 75 |
Relative density (%) | 5 | 90 |
Parameter | Value |
---|---|
Stress (MPa) | 11.9 |
Unit cell size (mm) | 11.4 |
Total height (mm) | 42.5 |
Breadth (mm) | 8.7 |
Width (mm) | 17.29 |
Relative density (%) | 6.67 |
Strain (mm/mm) | 2.8 × 10−6 |
Parameter | Value |
---|---|
Stress (MPa) | 12 |
Unit cell size (mm) | 1.5 |
Total height (mm) | 37.3 |
Breadth (mm) | 33.69 |
Width (mm) | 69.89 |
Relative density (%) | 5.18 |
Strain (mm/mm) | 6.5 × 10−6 |
Parameter | Value |
---|---|
Stress (MPa) | 4.15 |
Unit cell size (mm) | 18.6 |
Total height (mm) | 28.5 |
Breadth (mm) | 24.32 |
Width (mm) | 68.12 |
Relative density (%) | 6.12 |
Strain (mm/mm) | 1.7 × 10−5 |
Parameter | Value |
---|---|
Stress (MPa) | 9.2 |
Unit cell size (mm) | 8.9 |
Total height (mm) | 24.3 |
Breadth (mm) | 38.5 |
Width (mm) | 67.32 |
Relative density (%) | 5.007 |
Strain (mm/mm) | 6.1 × 10−6 |
Parameter | Value |
---|---|
Stress (MPa) | 17.99 |
Unit cell size (mm) | 20.06 |
Total height (mm) | 54.8 |
Breadth (mm) | 51.7 |
Width (mm) | 62.7 |
Relative density (%) | 9.89 |
Strain (mm/mm) | 6.2 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Sajjad, U.; Sengupta, A.; Ali, M.; Sultan, M.; Hamid, K. A Hybrid Data-Driven Metaheuristic Framework to Optimize Strain of Lattice Structures Proceeded by Additive Manufacturing. Micromachines 2023, 14, 1924. https://doi.org/10.3390/mi14101924
Zhang T, Sajjad U, Sengupta A, Ali M, Sultan M, Hamid K. A Hybrid Data-Driven Metaheuristic Framework to Optimize Strain of Lattice Structures Proceeded by Additive Manufacturing. Micromachines. 2023; 14(10):1924. https://doi.org/10.3390/mi14101924
Chicago/Turabian StyleZhang, Tao, Uzair Sajjad, Akash Sengupta, Mubasher Ali, Muhammad Sultan, and Khalid Hamid. 2023. "A Hybrid Data-Driven Metaheuristic Framework to Optimize Strain of Lattice Structures Proceeded by Additive Manufacturing" Micromachines 14, no. 10: 1924. https://doi.org/10.3390/mi14101924
APA StyleZhang, T., Sajjad, U., Sengupta, A., Ali, M., Sultan, M., & Hamid, K. (2023). A Hybrid Data-Driven Metaheuristic Framework to Optimize Strain of Lattice Structures Proceeded by Additive Manufacturing. Micromachines, 14(10), 1924. https://doi.org/10.3390/mi14101924