Polarization Engineered p-Type Electron Blocking Layer Free AlGaN Based UV-LED Using Quantum Barriers with Heart-Shaped Graded Al Composition for Enhanced Luminescence
Abstract
:1. Introduction
2. Structural Parameters
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muramoto, Y.; Kimura, M.; Nouda, S. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp. Semicond. Sci. Technol. 2014, 29, 084004. [Google Scholar] [CrossRef]
- Gassie, L.W.; Englehardt, J.D. Advanced oxidation and disinfection processes for onsite net-zero greywater reuse: A review. Water Res. 2017, 125, 384–399. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Z.; Lan, J.; Yan, Y.; Zhu, N. Kinetics of inactivation and photoreactivation of Escherichia coli using ultrasound-enhanced UV-C light-emitting diodes disinfection. Ultrason. Sonochem. 2017, 35, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Rattanakul, S.; Oguma, K. Analysis of Hydroxyl Radicals and Inactivation Mechanisms of Bacteriophage MS2 in Response to a Simultaneous Application of UV and Chlorine. Environ. Sci. Technol. 2017, 51, 455–462. [Google Scholar] [CrossRef]
- Rattanakul, S.; Oguma, K. Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms. Water Res. 2018, 130, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Okamura, H.; Niizeki, S.; Ochi, T.; Matsumoto, A. UV curable formulations for UV-C LEDs. J. Photopolym. Sci. Technol. 2016, 29, 99–104. [Google Scholar] [CrossRef]
- Okamura, H.; Matoba, T.; Takada, K.; Yamashita, M.; Shirai, M.; Matsumoto, A. Photo-thermal dual curing of acrylic anchor resins for screen printing. Prog. Org. Coat. 2016, 100, 47–50. [Google Scholar] [CrossRef]
- Yamazaki, S.; Nishioka, A.; Kasuya, S.; Ohkura, N.; Hemmi, H.; Kaisho, T.; Taguchi, O.; Sakaguchi, S.; Morita, A. Homeostasis of Thymus-Derived Foxp3+ Regulatory T Cells Is Controlled by Ultraviolet B Exposure in the Skin. J. Immunol. 2014, 193, 5488–5497. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Morita, A.; Seité, S.; Haarmann-Stemmann, T.; Grether-Beck, S.; Krutmann, J. Environment-induced lentigines: Formation of solar lentigines beyond ultraviolet radiation. Exp. Dermatol. 2015, 24, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Zhang, X. Titanium dioxide photocatalysis: Present situation and future approaches. Comptes Rendus Chim. 2006, 9, 750–760. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Das, S.; Lenka, T.R.; Talukdar, F.A.; Velpula, R.T.; Jain, B.; Nguyen, H.P.T.; Crupi, G. Effects of polarized-induced doping and graded composition in an advanced multiple quantum well InGaN/GaN UV-LED for enhanced light technology. Eng. Res. Express 2022, 4, 015030. [Google Scholar] [CrossRef]
- Khan, M.A.; Shatalov, M.; Maruska, H.P.; Wang, H.M.; Kuokstis, E. III-nitride UV devices. Jpn. J. Appl. Phys. 2005, 44, 7191–7206. [Google Scholar] [CrossRef]
- Uhlin, F.; Fridolin, I.; Lindberg, L.G.; Magnusson, M. Estimating total urea removal and protein catabolic rate by monitoring UV absorbance in spent dialysate. Nephrol. Dial. Transplant. 2005, 20, 2458–2464. [Google Scholar] [CrossRef] [PubMed]
- Tomson, R.; Uhlin, F.; Fridolin, I. Urea rebound assessment based on UV absorbance in spent dialysate. ASAIO J. 2014, 60, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Schubert, E.F.; Kim, J.K. Efficiency droop in light-emitting diodes: Challenges and counter measures. Laser Photonics Rev. 2013, 7, 408–421. [Google Scholar] [CrossRef]
- Pieniak, K.; Chlipala, M.; Turski, H.; Trzeciakowski, W.; Muziol, G.; Staszczak, G.; Kafar, A.; Makarowa, I.; Grzanka, E.; Grzanka, S.; et al. Quantum-confined Stark effect and mechanisms of its screening in InGaN/GaN light-emitting diodes with a tunnel junction. Opt. Express 2021, 29, 1824. [Google Scholar] [CrossRef]
- Hirayama, H.; Fujikawa, S.; Noguchi, N.; Norimatsu, J.; Takano, T.; Tsubaki, K.; Kamata, N. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys. Status Solidi 2009, 206, 1176–1182. [Google Scholar] [CrossRef]
- Chu, C.; Tian, K.; Che, J.; Shao, H.; Kou, J.; Zhang, Y.; Li, Y.; Wang, M.; Zhu, Y.; Zhang, Z.-H. On the origin of enhanced hole injection for AlGaN-based deep ultraviolet light-emitting diodes with AlN insertion layer in p-electron blocking layer. Opt. Express 2019, 27, A620. [Google Scholar] [CrossRef]
- Velpula, R.T.; Jain, B.; Bui, H.Q.T.; Shakiba, F.M.; Jude, J.; Tumuna, M.; Nguyen, H.-D.; Lenka, T.R.; Nguyen, H.P.T. Improving carrier transport in AlGaN deep-ultraviolet light-emitting diodes using a strip-in-a-barrier structure. Appl. Opt. 2020, 59, 5276. [Google Scholar] [CrossRef]
- Nakarmi, M.L.; Nepal, N.; Lin, J.Y.; Jiang, H.X. Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys. Appl. Phys. Lett. 2009, 94, 10–13. [Google Scholar] [CrossRef]
- Nam, K.B.; Nakarmi, M.L.; Li, J.; Lin, J.Y.; Jiang, H.X. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence. Appl. Phys. Lett. 2003, 83, 878–880. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Chen, S.-W.H.; Chu, C.; Tian, K.; Fang, M.; Zhang, Y.; Bi, W.; Kuo, H.-C. Nearly efficiency-droop-free algan-based ultraviolet light-emitting diodes with a specifically designed superlattice P-type electron blocking layer for high MG doping efficiency. Nanoscale Res. Lett. 2018, 13, 122. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Lenka, T.R.; Talukdar, F.A.; Velpula, R.T.; Nguyen, H.P.T. Efficiency and Radiative Recombination Rate Enhancement in GaN/AlGaN Multi-Quantum Well-Based Electron Blocking Layer Free UV-LED for Improved Luminescence. FACTA Univ. Ser. Electron. Energ. 2023, 36, 91–101. [Google Scholar] [CrossRef]
- Das, S.; Lenka, T.R.; Talukdar, F.A.; Sadaf, S.M.; Velpula, R.T.; Nguyen, H.P.T. Impact of a prestrained graded InGaN/GaN interlayer towards enhanced optical characteristics of a multi-quantum well LED based on silicon substrate. Appl. Opt. 2022, 61, 8951–8958. [Google Scholar] [CrossRef]
- Philip, M.R.; Choudhary, D.D.; Djavid, M.; Le, K.Q.; Piao, J.; Nguyen, H.P.T. High efficiency green/yellow and red InGaN/AlGaN nanowire light-emitting diodes grown by molecular beam epitaxy. J. Sci. Adv. Mater. Devices 2017, 2, 150–155. [Google Scholar] [CrossRef]
- Liu, C.; Melanson, B.; Zhang, J. Algan-delta-gan quantum well for duvleds. Photonics 2020, 7, 87. [Google Scholar] [CrossRef]
- Das, S.; Lenka, T.R.; Talukdar, F.A.; Nguyen, H.P.T.; Crupi, G. The role of indium composition in InxGa1-xN prestrained layer towards optical characteristics of EBL free GaN/InGaN nanowire LEDs for enhanced luminescence. Int. J. Numer. Model. 2023, 36, e3169. [Google Scholar] [CrossRef]
- Varshni, Y.P. Temperature dependence of the energy gap in semiconductors. Physica 1967, 34, 149–154. [Google Scholar] [CrossRef]
- Piprek, J. Nitride Semiconductor Devices: Principles and Simulation; Wiley Online Library: Berlin, Germany, 2007; Volume 590. [Google Scholar]
- Nunez-Gonzalez, R. First-principles calculation of the band gap of AlxGa1−xN and InxGa1−xN. Rev. Mex. Fis. 2008, 54, 111–118. [Google Scholar]
- Chuang, S.; Chang, C. K·p method for strained wurtzite semiconductors. Phys. Rev. B 1996, 54, 2491–2504. [Google Scholar] [CrossRef] [PubMed]
- Caughey, D.M.; Thomas, R.E. Carrier Mobilities in Silicon Empirically Related to Doping and Field. Proc. IEEE 1967, 55, 2192–2193. [Google Scholar] [CrossRef]
- Yun, J.; Shim, J.I.; Hirayama, H. Analysis of efficiency droop in 280-nm AlGaN multiple-quantum-well light-emitting diodes based on carrier rate equation. Appl. Phys. Express 2015, 8, 022104. [Google Scholar] [CrossRef]
- Hirayama, H. Recent Progress in AlGaN Deep-UV LEDs. In Light-Emitting Diode: An Outlook on the Empirical Features and Its Recent Technological Advancements; BoD—Books on Demand: London, UK, 2018. [Google Scholar] [CrossRef]
- Fiorentini, V.; Bernardini, F.; Ambacher, O. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures. Appl. Phys. Lett. 2002, 80, 1204–1206. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R. Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 2003, 94, 3675–3696. [Google Scholar] [CrossRef]
- Das, S.; Lenka, T.R.; Talukdar, F.A.; Velpula, R.T.; Nguyen, H.P.T. Design and analysis of novel high-performance III-nitride MQW-based nanowire white-LED using HfO2/SiO2 encapsulation. Opt. Quantum Electron. 2023, 55, 67. [Google Scholar] [CrossRef]
- Xu, Q.; Niu, Y.; Li, J.; Yang, Z.; Gao, J.; Ding, L.; Ni, H.; Zhu, P.; Liu, Y.; Tang, Y.; et al. Recent progress of quantum dots for energy storage applications. Carbon Neutrality 2022, 1, 13. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Liu, W.; Ju, Z.; Tan, S.T.; Ji, Y.; Kyaw, Z.; Zhang, X.; Wang, L.; Sun, X.W.; Demir, H.V. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers. Appl. Phys. Lett. 2014, 104, 16–21. [Google Scholar] [CrossRef]
- Ambacher, O.; Dimitrov, R.; Stutzmann, M.; Foutz, B.E.; Murphy, M.J.; Smart, J.A.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Chumbes, M.; et al. Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices. Phys. Status Solidi Basic Res. 1999, 216, 381–389. [Google Scholar] [CrossRef]
- Kang, Y.; Yu, H.; Ren, Z.; Xing, C.; Liu, Z.; Jia, H.; Guo, W.; Sun, H. Efficiency Droop Suppression and Light Output Power Enhancement of Deep Ultraviolet Light-Emitting Diode by Incorporating Inverted-V-Shaped Quantum Barriers. IEEE Trans. Electron. Devices 2020, 67, 4958–4962. [Google Scholar] [CrossRef]
- Jain, B.; Velpula, R.T.; Patel, M.; Sadaf, S.M.; Nguyen, H.P.T. Improved performance of electron blocking layer free algan deep ultraviolet light-emitting diodes using graded staircase barriers. Micromachines 2021, 12, 334. [Google Scholar] [CrossRef] [PubMed]
- Jain, B.; Velpula, R.T.; Velpula, S.; Nguyen, H.-D.; Nguyen, H.P.T. Enhanced hole transport in AlGaN deep ultraviolet light-emitting diodes using a double-sided step graded superlattice electron blocking layer. J. Opt. Soc. Am. B 2020, 37, 2564. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, Z.H.; Kyaw, Z.; Tan, S.T.; Ju, Z.G.; Zhang, X.L.; Liu, W.; Sun, X.W.; VolkanDemir, H. Influence of n-type versus p-type AlGaN electron-blocking layer on InGaN/GaN multiple quantum wells light-emitting diodes. Appl. Phys. Lett. 2013, 103, 053512. [Google Scholar] [CrossRef]
- Pandey, A.; Shin, W.J.; Liu, X.; Mi, Z. Effect of electron blocking layer on the efficiency of AlGaN mid-ultraviolet light emitting diodes. Opt. Express 2019, 27, A738. [Google Scholar] [CrossRef] [PubMed]
Materials | α | β | |
---|---|---|---|
GaN | 0.919 meV/K | 820 K | 3.507 eV |
AlN | 1.789 meV/K | 1432 K | 6.23 eV |
CBBH (meV) | LED1 | LED2 | LED3 |
---|---|---|---|
ϕC1 | 145.8 | 102.3 | 102.1 |
ϕC2 | 164.4 | 110.7 | 109.1 |
ϕC3 | 231.2 | 112.7 | 129.3 |
ϕC4 | 298.1 | 115.9 | 194.0 |
ϕC5 | 327.6 | 117.2 | 215.3 |
ϕC6 | 249.8 | 121.4 | 311.9 |
ϕE | 244.1 | 256.0 |
VBBH (meV) | LED1 | LED2 | LED3 |
---|---|---|---|
ΦV1 | 225.2 | 302.3 | 252.1 |
ΦV2 | 224.7 | 317.1 | 261.7 |
ΦV3 | 223.1 | 329.0 | 272.4 |
ΦV4 | 222.2 | 362.3 | 289.6 |
ΦV5 | 221.9 | 372.1 | 294.2 |
ΦV6 | 220.3 | 384.6 | 309.5 |
LED | ||||||||
---|---|---|---|---|---|---|---|---|
LED2 | 4.789 | 5.876 | 6.983 | 8.112 | 3.535 | 3.565 | 3.599 | 3.636 |
LED3 | 4.078 | 5.149 | 6.242 | 7.356 | 3.554 | 3.588 | 3.624 | 3.659 |
Parameters | LED1 | LED2 | LED3 |
---|---|---|---|
Maximum IQE (%) | 39.3 at 1.93 mA | 47.7 at 3.28 mA | 55.3 at 2.78 mA |
IQE (%) at 60 mA | 29.2 | 40.9 | 53.9 |
Efficiency Droop (%) at 60 mA | 25.7 | 16.7 | 2.53 |
Luminous Power at 60 mA (mW) | 10.7 | 13.9 | 17.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, S.; Lenka, T.R.; Talukdar, F.A.; Nguyen, H.P.T.; Crupi, G. Polarization Engineered p-Type Electron Blocking Layer Free AlGaN Based UV-LED Using Quantum Barriers with Heart-Shaped Graded Al Composition for Enhanced Luminescence. Micromachines 2023, 14, 1926. https://doi.org/10.3390/mi14101926
Das S, Lenka TR, Talukdar FA, Nguyen HPT, Crupi G. Polarization Engineered p-Type Electron Blocking Layer Free AlGaN Based UV-LED Using Quantum Barriers with Heart-Shaped Graded Al Composition for Enhanced Luminescence. Micromachines. 2023; 14(10):1926. https://doi.org/10.3390/mi14101926
Chicago/Turabian StyleDas, Samadrita, Trupti Ranjan Lenka, Fazal Ahmed Talukdar, Hieu Pham Trung Nguyen, and Giovanni Crupi. 2023. "Polarization Engineered p-Type Electron Blocking Layer Free AlGaN Based UV-LED Using Quantum Barriers with Heart-Shaped Graded Al Composition for Enhanced Luminescence" Micromachines 14, no. 10: 1926. https://doi.org/10.3390/mi14101926
APA StyleDas, S., Lenka, T. R., Talukdar, F. A., Nguyen, H. P. T., & Crupi, G. (2023). Polarization Engineered p-Type Electron Blocking Layer Free AlGaN Based UV-LED Using Quantum Barriers with Heart-Shaped Graded Al Composition for Enhanced Luminescence. Micromachines, 14(10), 1926. https://doi.org/10.3390/mi14101926