Voltammetric Investigation of Ferulic Acid at Disposable Pencil Graphite Electrode
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optimization of the Working Conditions for FA Voltammetric Analysis
3.1.1. Selection of the Working Electrode Material
3.1.2. The Stability of the FA Solution
3.1.3. Influence of the Solution pH
3.2. Investigation of FA Voltammetric Behavior at HB_PGE
3.3. Voltammetric Quantitative Analysis of FA at HB_PGE
3.3.1. Linear Range, Limits of Detection and Quantification
3.3.2. Reproducibility of the Electrode Response
3.4. Investigation of Possible Interferents on FA Voltammetric Analysis at HB_PGE
3.5. Analytical Application of DPV and SWV at HB_PGE Method for FA Voltammetric Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
α-Fe2O3/MWCNTs | α-ferric oxide/multi-walled carbon nanotubes |
Ag/MWCNTs | silver decorated multi-walled carbon nanotubes |
Amp | amperometry |
CA | chronoamperometry |
CC | carbon cloth |
CDE | carbon disc electrode |
CNF | carbon nanofiber |
CPE | carbon paste electrode |
CV | cyclic voltammetry |
DDAB/Naf | didodecyldimethylammonium bromide/Nafion composite film |
DPV | differential pulse voltammetry |
EPD-LnPc2 sensors | electrophoretic deposition-lanthanoid bisphthalocyanines voltammetric multisensor |
erGO | electrochemically reduced graphene oxide |
FIA | flow injection analysis |
g-C3N4/CS | graphite-like carbon nitride/chitosan |
GCE | glassy carbon electrode |
GN | graphene nanosheet |
G-novolac | Graphene–phenolic novolac resin composite |
GO/MWCNTs | graphene oxide sheets and multi-walled carbon nanotubes nanocomposite |
La–Ty | Laccase–Tyrosinase |
L-Cys/SAM | L-cysteine self-assembled monolayers |
LSV | linear sweep voltammetry |
MBIBr/NiO-SWCNTs | NiO-embedded single-walled carbon nanotube nanocomposite and n-methyl-3-butylimidazolium bromide |
MgO/SWCNTs-[Bmim][Tf2N] | magnesium oxide/single-walled carbon nanotubes/1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide |
MnFe2O4/BMIM-PF6 | MnFe2O4 nanoparticle/1-butyl-3-methylimidazolium hexafluorophosphate |
MnO2-NPs/MWCNTs | MnO2 nanoparticles decorated multi-walled carbon nanotubes |
MWCNTs | multi-walled carbon nanotubes |
pBCP/f-SWCNTs | polybromocresol purple/polyaminobenzene sulfonic acid functionalized single-walled carbon nanotubes |
PDDA-G | poly(diallyldimethylammoniumchloride) functionalized graphene |
PEI/MWCNT | polyethyleneimine–multi-walled carbon nanotube |
PGE | pencil graphite electrode |
pGlu | poly(glutamic acid) |
PPy/MWCNT | polypyrrole-multiwalled carbon nanotubes |
pSY/MWCNTs | poly(Sunset Yellow)/multiwalled carbon nanotubes |
rG-CdO/MOITF | reduced graphene decorated CdO nanocomposite/1- methyl-3-octylimidazolium tetrafuoroborate ionic liquid |
rGO-AuNPs/MIP-(a)SPE | molecularly imprinted on reduced graphene oxide-gold nanoparticles modified activated screen printed electrode |
rGO/ZrHCF-PIGE | reduced graphene oxide/zirconium hexacyanoferrate modified paraffin impregnated graphite electrode |
SPE | screen-printed electrode |
SWV | square-wave voltammetry |
TiO2-NPs/rGO | TiO2 nanoparticle-decorated, chemically reduced graphene oxide |
References
- Drăgan, M.; Tătărîngă, G.; Mircea, C.; Cioancă, O.; Dragostin, O.; Iacob, A.T.; Profire, L.; Stan, C.D. Ferulic acid—A versatile molecule. Acta Biol. Marisiensis 2018, 1, 53–60. [Google Scholar] [CrossRef]
- Marcato, D.C.; Spagnol, C.M.; Salgado, H.R.N.; Isaac, V.L.B.; Corrêa, M.A. New and potential properties, characteristics, and analytical methods of ferulic acid: A review. Braz. J. Pharm. Sci. 2022, 58, e18747. [Google Scholar] [CrossRef]
- Boz, H. Ferulic acid in cereals—A review. Czech J. Food Sci. 2015, 33, 1–7. [Google Scholar] [CrossRef]
- Raj, N.D.; Singh, D. A critical appraisal on ferulic acid: Biological profile, biopharmaceutical challenges and nano formulations. Health Sci. Rev. 2022, 5, 100063. [Google Scholar] [CrossRef]
- Ou, S.; Kwok, K. Ferulic acid: Pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric. 2004, 84, 1261–1269. [Google Scholar] [CrossRef]
- Dong, X.; Huang, R. Ferulic acid: An extraordinarily neuroprotective phenolic acid with anti-depressive properties. Phytomedicine 2022, 105, 154355. [Google Scholar] [CrossRef]
- Tian, W.; Chen, G.; Gui, Y.; Zhang, G.; Li, Y. Rapid quantification of total phenolics and ferulic acid in whole wheat using UV–Vis spectrophotometry. Food Control 2021, 123, 107691. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Farahmandfar, R.; Hosseinpour, R.; Alizadeh, J.; Abbaspourrad, A. Determination of ferulic acid in the presence of butylated hydroxytoluene as two phenolic antioxidants using a highly conductive food nanostructure electrochemical sensor. Chem. Pap. 2019, 73, 2441–2447. [Google Scholar] [CrossRef]
- Janus, E.; Pinheiro, L.R.; Nowak, A.; Kucharska, E.; Swiatek, E.; Podolak, N.; Peruzynska, M.; Piotrowska, K.; Duchnik, W.; Kucharski, L.; et al. New ferulic acid and amino acid derivatives with increased cosmeceutical and pharmaceutical potential. Pharmaceutics 2023, 15, 117. [Google Scholar] [CrossRef]
- Sibhatu, H.K.; Jabasingh, S.A.; Yimam, A.; Ahmed, S. Ferulic acid production from brewery spent grains, an agro-industrial waste. LWT Food Sci. Technol. 2021, 135, 110009. [Google Scholar] [CrossRef]
- Valerio, R.; Torres, C.A.V.; Brazinha, C.; da Silva, M.G.; Coelhoso, I.M.; Crespo, J.G. Purification of ferulic acid from corn fibre alkaline extracts for bio-vanillin production using an adsorption process. Sep. Purif. Technol. 2022, 298, 121570. [Google Scholar] [CrossRef]
- Barberousse, H.; Roiseux, O.; Robert, C.; Paquot, M.; Deroanne, C.; Blecker, C. Analytical methodologies for quantification of ferulic acid and its oligomers. J. Sci. Food Agric. 2008, 88, 1494–1511. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, S.; Pan, J.; Lin, J.; Wang, J.; Li, M.; Xie, A.; Luo, S. Nanomaterials-based electrochemical sensors for the detection of natural antioxidants in food and biological samples: Research progress. Microchim. Acta 2022, 189, 318. [Google Scholar] [CrossRef]
- European Pharmacopoeia; Council of Europe: Strasbourg, France, 2019.
- Li, X.; Gao, Y.; Xiong, H.; Yang, Z. The electrochemical redox mechanism and antioxidant activity of polyphenolic compounds based on inlaid multi-walled carbon nanotubes modified graphite electrode. Open Chem. 2021, 19, 961–973. [Google Scholar] [CrossRef]
- David, I.G.; Popa, D.E.; Buleandra, M. Pencil graphite electrodes: A versatile tool in electroanalysis. J. Anal. Methods Chem. 2017, 2017, 1905968. [Google Scholar] [CrossRef] [PubMed]
- David, I.G.; Buleandra, M.; Popa, D.E.; Cheregi, M.C.; David, V.; Iorgulescu, E.E.; Tartareanu, G.O. Recent developments in voltammetric analysis of pharmaceuticals using disposable pencil graphite electrodes. Processes 2022, 10, 472. [Google Scholar] [CrossRef]
- Pandey, A.; Sharma, S.; Jain, R.; Raja, A.N. Review—Pencil graphite electrode: An emerging sensing material. J. Electrochem. Soc. 2020, 167, 037501. [Google Scholar] [CrossRef]
- David, I.G.; Litescu, S.C.; Moraru, R.; Albu, C.; Buleandra, M.; Popa, D.E.; Riga, S.; Ciobanu, A.M.; Noor, H. Electroanalysis of naringin at electroactivated pencil graphite electrode for the assessment of polyphenolics with intermediate antioxidant power. Antioxidants 2022, 11, 2306. [Google Scholar] [CrossRef]
- Malagutti, M.A.; de Fátima Ulbrich, K.; Winiarski, J.P.; Paes, V.Z.C.; Geshev, J.; Jost, C.L.; de Campos, C.E.M. Mechanochemical synthesis of γ-CoTe2 nanocrystals and their application for determination of ferulic acid. Mater. Today Commun. 2022, 31, 103481. [Google Scholar] [CrossRef]
- Guillén-Villar, R.C.; Vargas-Álvarez, Y.; Vargas, R.; Garza, J.; Matus, M.H.; Salas-Reyes, M.; Domínguez, Z. Study of the oxidation mechanisms associated to new dimeric and trimeric esters of ferulic acid. J. Electroanal. Chem. 2015, 740, 95–104. [Google Scholar] [CrossRef]
- da Silva, L.V.; Lopes, C.B.; da Silva, W.C.; de Paiva, Y.G.; de Assis dos Santos Silva, F.; Lima, P.R.; Kubota, L.T.; Goulart, M.O.F. Electropolymerization of ferulic acid on multi-walled carbon nanotubes modified glassy carbon electrode as a versatile platform for NADH, dopamine and epinephrine separate detection. Microchem. J. 2017, 133, 460–467. [Google Scholar] [CrossRef]
- Sousa, W.R.; da Rocha, C.; Cardoso, C.L.; Silva, D.H.S.; Zanoni, M.V.B. Determination of the relative contribution of phenolic antioxidants in orange juice by voltammetric methods. J. Food Compos. Anal. 2004, 17, 619–633. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, S.; Yang, Z.; Wang, Q.; He, P.; Fang, Y. Determination of four polyphenolic active ingredients from a pharmaceutical preparation by capillary zone electrophoresis with amperometric detection. J. Pharm. Biomed. Anal. 2008, 48, 198–200. [Google Scholar] [CrossRef] [PubMed]
- Yua, Y.-Y.; Wu, Q.-S.; Wang, X.-G.; Ding, Y.P. Electrochemical determination of ferulic acid in Chinese traditional medicine Xiao Yao pills at electrode modified with carbon nanotube. Russ. J. Electrochem. 2009, 45, 170–174. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Aytuganova, I.; Nizamova, A.; Budnikov, H. Differential pulse voltammetric assay of coffee antioxidant capacity with MWNT-modified electrode. Food Anal. Methods 2013, 6, 1629–1638. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Gao, D.; Xiong, H.; Gao, Y.; Li, S.; Li, X.; Yang, Z.; Liu, M.; Dai, J.; et al. Electrochemical behavior and determination of four drugs using multi-wall carbon nanotubes modified glassy carbon electrode. Int. J. Electrochem. Sci. 2019, 14, 506–515. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, Y.; Li, Q.; Du, H.; Gui, G.; Zhao, G. Electrochemical determination of ferulic acid in Pinellia Ternata based on Gos/MWCNTs nanocomposite modified electrode. Int. J. Electrochem. Sci. 2020, 15, 559–566. [Google Scholar] [CrossRef]
- Erady, V.; Mascarenhas, R.J.; Satpati, A.K.; Detriche, S.; Mekhalif, Z.; Dalhalle, J.; Dhason, A. Sensitive detection of ferulic acid using multi-walled carbon nanotube decorated with silver nano-particles modified carbon paste electrode. J. Electroanal. Chem. 2017, 806, 22–31. [Google Scholar] [CrossRef]
- Li, G.; Luo, B.; Lv, X.; Tian, X. MWCNTs modified α-Fe2O3 derived from MIL-53(fe) with highly sensitive electrochemical sensor for ferulic acid. J. Porous Mater. 2023, 2023, 470y. [Google Scholar] [CrossRef]
- Vilian, A.T.E.; Chen, S.-M. Preparation of carbon nanotubes decorated with manganese dioxide nanoparticles for electrochemical determination of ferulic acid. Microchim. Acta 2015, 182, 1103–1111. [Google Scholar] [CrossRef]
- Zabihpoura, T.; Shahidia, S.-A.; Karimi-Malehb, H.; Ghorbani-HasanSaraeia, A. An ultrasensitive electroanalytical sensor based on MgO/SWCNTs-1-Butyl3-methylimidazolium bis(trifluoromethylsulfonyl)imide paste electrode for the determination of ferulic acid in the presence sulfite in food samples. Microchem. J. 2020, 154, 104572. [Google Scholar] [CrossRef]
- Jing, L.; Lin, J.; Fei, Q.; Tang, H.; Yang, X.; Sun, C. Simultaneous quantitation of caffeic acid and ferulic acid based on graphite-like C3N4/chitosan modified film. Int. J. Electrochem. Sci. 2017, 12, 8504–8515. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Zhupanova, A.; Davletshin, R. Simultaneous determination of ferulic acid and vanillin in Vanilla extracts using voltammetric sensor based on electropolymerized bromocresol purple. Sensors 2022, 22, 288. [Google Scholar] [CrossRef]
- Ziyatdinovaa, G.K.; Gussa, E.V.; Morozovaa, E.V.; Budnikova, H.C. An electrode based on electropolymerized Sunset Yellow for the simultaneous voltammetric determination of chlorogenic and ferulic acids. J. Anal. Chem. 2021, 76, 371–380. [Google Scholar] [CrossRef]
- Abdel-Hamid, R.; Newair, E.F. Voltammetric determination of ferulic acid using polypyrrole-multiwalled carbon nanotubes modified electrode with sample application. Nanomaterials 2015, 5, 1704–1715. [Google Scholar] [CrossRef] [PubMed]
- Arribas, A.S.; Martinez-Fernandez, M.; Moreno, M.; Bermejo, E.; Zapardiel, A.; Chicharro, M. Analysis of total polyphenols in wines by FIA with highly stable amperometric detection using carbon nanotube-modified electrodes. Food Chem. 2013, 136, 1183. [Google Scholar] [CrossRef]
- Martin, M.G.; de Saja, J.A.; Munoz, R.; Rodriguez-Mendez, M.L. Multisensor system based on bisphthalocyanine nanowires for the detection of antioxidants. Electrochim. Acta 2012, 68, 88–94. [Google Scholar] [CrossRef]
- Wang, X.-G.; Li, J.; Fan, Y.-J.; Zhang, X. Determination of ferulic acid in Chinese proprietary medicine based on a poly-glutamic acid film sensor. Russ. J. Electrochem. 2012, 48, 1160–1165. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Li, Q.; Ding, Y.; Jia, J.; Deng, D. Voltammetric determination of ferulic acid by didodecyldimethylammonium bromide/nafion composite film-modified carbon paste electrode. Anal. Sci. 2010, 26, 907–911. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Yang, Z.; Yang, Y.; Pang, P.; Gao, Y.; Hu, Q. Rapid electrochemical detection of ferulic acid based on a graphene modified glass carbon electrode. Anal. Methods 2013, 5, 3834–3839. [Google Scholar] [CrossRef]
- Liu, L.-J.; Gao, X.; Zhang, P.; Feng, S.-L.; Hu, F.-D.; Li, Y.-D.; Wang, C.-M. Ultrasensitive detection of ferulic acid using poly(diallyldimethylammonium chloride) functionalized graphene-based electrochemical sensor. J. Anal. Meth. Chem. 2014, 2014, 790. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Gou, Y.; Gao, X.; Zhang, P.; Chen, W.; Feng, S.; Hu, F.; Li, Y. Electrochemically reduced graphene oxide-based electrochemical sensor for the sensitive determination of ferulic acid in A. sinensis and biological samples. Mat. Sci. Eng. C 2014, 42, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Buffon, E.; Stradiotto, N.R. A molecularly imprinted polymer on reduced graphene oxide-gold nanoparticles modified screen-printed electrode for selective determination of ferulic acid in orange peels. Microchem. J. 2021, 167, 106339. [Google Scholar] [CrossRef]
- Bharathi, T.D.; Anandh, P.S.; Rangarajan, M. Differential pulse voltammetric detection of ferulic acid using RGO-TiO2 electrodes. In Proceedings of the 2018 15th IEEE India Council International Conference (INDICON), Combatore, India, 5–18 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Shahidi, S.A.; Bijad, M. A rapid voltammetric strategy for determination of ferulic acid using electrochemical nanostructure tool in food samples. J. Food Meas. Charact. 2020, 14, 3389–3396. [Google Scholar] [CrossRef]
- Mao, H.; Zhang, Y.; Chen, G. Determination of three phenolic acids in Cimicifugae rhizoma by capillary electrophoresis with a graphene–phenolic resin composite electrode. Anal. Methods 2019, 11, 303–308. [Google Scholar] [CrossRef]
- Saranya, S.; Deepa, P.N. Evolution of novel rGO/ZrHCF composite and utility in electrocatalysis towards nanomolar detection of sodium nitrite and ferulic acid. J. Mater. Sci. Mater. Electron. 2020, 31, 18923–18936. [Google Scholar] [CrossRef]
- Murugesan, D.; Amir, H.; Ponpandian, N.; Viswanathan, C. Development of RF magnetron-sputtered molybdenum oxide-modified carbon cloth thin film as a ferulic acid sensor. Appl. Phys. A 2021, 127, 805. [Google Scholar] [CrossRef]
- Elkaoutit, M.; Naranjo-Rodriguez, I.; Temsamani, K.R.; de la Vega, M.D.; Hidalgo-Hidalgo de Cisneros, J.L. Dual laccase–tyrosinase based sonogel–carbon biosensor for monitoring polyphenols in beers. J. Agric. Food Chem. 2007, 55, 8011–8018. [Google Scholar] [CrossRef]
- Li-Jun, L.; Lai-Bo, Y.; Qi-Feng, C.; Hao, C.; Feng-Min, W.; Jian-Ling, W.; Hong-Xing, K. Determination of ferulic acid based on L-cysteine self-assembled modified gold electrode coupling irreversible biamperometry. Chin. J. Anal. Chem. 2007, 35, 933–937. [Google Scholar] [CrossRef]
- Tee-ngam, P.; Nunant, N.; Rattanarat, P.; Siangproh, W.; Chailapakul, O. Simple and rapid determination of ferulic acid levels in food and cosmetic samples using paper-based platforms. Sensors 2013, 13, 13039–13053. [Google Scholar] [CrossRef]
- Zabihpour, T.; Shahidi, S.-A.; Karimi-Maleh, H.; Saraei, A.G.-H. MnFe2O4/1-Butyl-3-methylimidazolium hexafluorophosphate modified carbon paste electrode: An amplified food sensor for determination of gallic acid in the presence of ferulic acid as two phenolic antioxidants. Eurasian Chem. Commun. 2020, 2, 362–373. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Apetrei, C. Simultaneous determination of caffeic acid and ferulic acid using a carbon nanofiber-based screen-printed sensor. Sensors 2022, 22, 4689. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Guidelines for Standard Method Performance Requirements; Appendix F; AOAC International: Rockville, MD, USA, 2012; pp. 1–17. [Google Scholar]
Electrochemical Pretreatment | E Constant (2.00 V; 60 s) | CV (−2.00 to 2.00 V; Can Rate 0.500 V/s; 10 Cycles) | None | |
---|---|---|---|---|
Medium | Ipa (A) | |||
0.1 mol/L HCl | 1.82 × 10−5 | 1.74 × 10−5 | 1.87 × 10−5 | |
ABS pH 4.00 | 1.57 × 10−5 | 1.85 × 10−5 | ||
PBS pH 7.00 | 1.67 × 10−5 | 1.47 × 10−5 |
Technique | pH Range | a1 Signal | a2 Signal | c Signal |
---|---|---|---|---|
CV scan 1 | 1.81–9.15 | Epa2 = −0.0566 × pH + 0.8747 (R2 = 0.9998) | Epc = −0.0566 × pH + 0.8747 (R2 = 0.9998)/1.81–7.96 | |
CV scan 2 | 1.81–7.96 | Epa1 = −0.0569 × pH + 0.6467 (R2 = 0.9960) | Epa2 = −0.0494 × pH + 0.8998 (R2 = 0.9965) | Epc = −0.0566 × pH + 0.8747 (R2 = 0.9998) |
CV scan 3 | 1.81–7.96 | Epa1 = −0.0574 × pH + 0.6575 (R2 = 0.9979) | Epa2 = −0.0498 × pH + 0.9201 (R2 = 0.9924) | Epc = −0.0566 × pH + 0.8747 (R2 = 0.9998) |
DPV | 1.81–9.15 | Epa2 = −0.0504 × pH + 0.8198 | ||
(R2 = 0.9750) | ||||
SWV | 1.81–9.15 | Epa2 = −0.0505 × pH + 0.8633 | ||
(R2 = 0.9959) |
Dependence | Regression Equation | |||
---|---|---|---|---|
Peak | a1 (Epa1 ~0.450–0.500 V) | a2 (Epa2 ~0.700–0.800 V) | c (Epc ~0.350–0.400 V) | |
Scan 1 | ||||
Ip = f(v) | Non-linear | Ipc = 2.00 × 10−4 × v − 9.00 × 10−9 (R2 = 0.9934) | ||
Ip = f(v1/2) | Ipa2 = 1.00 × 10−4 × v1/2 + 3.00 × 10−6 (R2 = 0.9964) | Non-linear | ||
log Ip = f(log v) | log Ipa2 = 0.5367 × log v − 3.9449 (R2 = 0.9931) | log Ipc = 1.0536 × log v − 3.7689 (R2 = 0.9947) | ||
Scan 2 | ||||
Ip = f(v) | Ipa1 = 1.00 × 10−4 × v − 8.00 × 10−7 (R2 = 0.9933) | Non-linear | Ipc = −2.00 × 10−4 × v + 7.00 × 10−7 (R2 = 0.9962) | |
Ip = f(v1/2) | Non-linear | Ipa2 = 5.00 × 10−5 × v1/2 − 4.00 × 10−7 (R2 = 0.9974) | Non-linear | |
log Ip = f(log v) | log Ipa1 = 1.1625 × log v − 3.8592 (R2 = 0.9871) | log Ipa2 = 0.5036 × log v − 4.3285 (R2 = 0.9934) | log Ipc = 1.1620 × log v − 3.6963 (R2 = 0.9964) |
Technique | Electrode | Linear Range (mol/L) | Limit of Detection (mol/L) | Sample | Ref. |
---|---|---|---|---|---|
CV/LSV | GCE | 4.00 × 10−4–1.00 × 10−3 | - | Orange juice | [23] |
Amp | CDE | 2.57 × 10−7–2.57 × 10−5 | 5.15 × 10−8 | Nao Xue Shuan Tablets | [24] |
CV | MWCNTs-GCE | 1.00 × 10−5–5.00 × 10−3 | 1.00 × 10−7 | Xiao Yao Pill | [25] |
DPV | MWCNTs-GCE | 5.30 × 10−6–5.30 × 10−4 | 3.20 × 10−7 | Coffee | [26] |
DPV | MWCNTs-GCE | 2.00 × 10−6–1.00 × 10−5 | 1.00 × 10−6 | Tablets | [27] |
DPV | MWCNTs-GCE | 1.03 × 10−8–6.17 × 10−7 | - | - | [15] |
CV | GO/MWCNT-GCE | 2.40 × 10−7–3.20 × 10−5 8.80 × 10−5–1.23 × 10−3 | 8.00 × 10−8 | Pinellia ternate | [28] |
Amp | Ag/MWCNTs-CPE | 4.00 × 10−8–1.00 × 10−3 | 3.00 × 10−8 | Spiked urine; wine | [29] |
DPV | α-Fe2O3/MWCNTs-GCE | up to 6.00 × 10−6 | 1.75 × 10−8 | Tablets | [30] |
SWV | MnO2-NPs/MWCNTs-GCE | 8.20 × 10−8–2.20 × 10−4 | 1.00 × 10−8 | Spiked human serum | [31] |
DPV | MgO/SWCNTs-[Bmim][Tf2N]-CPE | 9.00 × 10−9–4.50 × 10−4 | 3.00 × 10−9 | Red wine; white rice | [32] |
DPV | g-C3N4/CS-GCE | 2.57 × 10−5–1.54 × 10−4 | 2.55 × 10−5 | Food | [33] |
DPV | pBCP/f-SWCNTs-GCE | 1.00 × 10−7–5.00 × 10−6 5.00 × 10−6–2.50 × 10−5 | 7.20 × 10−8 | Vanilla extracts | [34] |
DPV | pSY/MWCNTs-GCE | 5.00 × 10−7–4.00 × 10−6 | 9.80 × 10−8 | Coffee | [35] |
SWV | PPy/MWCNT-GCE | 3.32 × 10−6–2.59 × 10−5 | 1.17 × 10−6 | Popcorn | [36] |
Amp | GCE PEI/MWCNT/GCE | 5.00 × 10−7–2.00 × 10−5 1.00 × 10−7–1.00 × 10−4 | 2.00 × 10−7 8.00 × 10−8 | Wines | [37] |
CV | EPD-DyPc2 EPD-GdPc2 EPD-LuPc2 | 6.00 × 10−5–1.00 × 10−4 | 2.19 × 10−6 3.18 × 10−5 6.91 × 10−6 | - | [38] |
LSV | pGlu-GCE | 2.00 × 10−7–3.00 × 10−4 | 7.00 × 10−8 | Chinese proprietary medicine | [39] |
CV | DDAB/Naf-CPE | 2.00 × 10−6–1.20 × 10−4 | 3.90 × 10−7 | Pharmaceuticals | [40] |
DPV | GN-GCE | 5.00 × 10−7–5.00 × 10−5 | 2.00 × 10−7 | Tablets | [41] |
DPV | PDDA-G-GCE | 8.95 × 10−8–5.29 × 10−5 | 4.42 × 10−8 | Angelica sinensis; spiked human urine | [42] |
SWV | γ-CoTe2-GCE | 4.00 × 10−8–2.80 × 10−5 | 1.30 × 10−8 | Cosmetics | [20] |
DPV | erGO-GCE | 8.49 × 10−8–3.89 × 10−5 | 2.06 × 10−8 | Powder of A. sinensis; spiked urine and plasma | [43] |
DPV | rGO-AuNPs/MIP-(a)SPE | 1.00 × 10−8–1.00 × 10−6 | 3.10 × 10−9 | Orange peels | [44] |
DPV | TiO2-NPs/rGO-GCE | 1.00 × 10−7–3.00 × 10−4 | 1.00 × 10−8 | Popcorn, corn milk | [45] |
SWV | rG-CdO/MOITF-CPE | 2.00 × 10−8–4.00 × 10−6 | 8.00 × 10−8 | Wheat flour; corn cider; corn milk | [46] |
Amp | G-novolac-CPE | 1.00 × 10−6–1.00 × 10−3 | 7.50 × 10−7 | Cimicifugae rhizoma | [47] |
SWV | rGO/ZrHCF-PIGE | 1.14 × 10−9–4.20 × 10−8 | 3.80 × 10−10 | Milk, water | [48] |
CA | MoO3-CC | 3.00 × 10−5–3.00 × 10−4 | 2.30 × 10−9 | Pineapple juice, water | [49] |
Amp | La–Ty Sonogel–Carbon biosensor | 3.00 × 10−8–2.50 × 10−6 | 6.40 × 10−8 | Beer | [50] |
FIA-Amp | L-Cys/SAM-Au | 5.00 × 10−7–8.00 × 10−5 1.00 × 10−4–1.00 × 10−3 | 1.20 × 10−7 | Sodium ferulate injection | [51] |
DPV | Paper-based electrochemical device | 1.54 × 10−5–7.20 × 10−4 | 5.15 × 10−6 | Corn cider, corn milk | [52] |
SVW | MBIBr/NiO-SWCNTs-CPE | 6.00 × 10−8–9.00 × 10−4 | 2.00 × 10−8 | Corn milk, wheat flour, corn cider | [8] |
DPV | MnFe2O4/BMIM-PF6-CPE | 3.00 × 10−7–2.50 × 10−4 | 1.00 × 10−7 | Blueberry, white rice, mango dried powder | [53] |
CV | CNF-SPE | 1.00 × 10−5–1.00 × 10−3 | 2.33 × 10−7 | Eye Blend product | [54] |
DPV SWV | PGE | 4.00 × 10−7–1.00 × 10−4 1.00 × 10−4–1.82 × 10−3 4.00 × 10−7–8.00 × 10−5 1.00 × 10−4–1.00 × 10−3 | 3.08 × 10−7 1.82 × 10−7 | This work |
Concentration (mol/L) | RSD% | ||
---|---|---|---|
Technique | SWV | DPV | |
4.00 × 10−7 | 6.36 | 6.03 | |
2.00 × 10−6 | 4.59 | 4.42 | |
5.00 × 10−4 | 3.10 | 3.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
David, I.G.; Popa, D.E.; Buleandra, M.; Codreanu, S.N.; Croitoru, L.; Iordache, L.A.; Noor, H. Voltammetric Investigation of Ferulic Acid at Disposable Pencil Graphite Electrode. Micromachines 2023, 14, 1951. https://doi.org/10.3390/mi14101951
David IG, Popa DE, Buleandra M, Codreanu SN, Croitoru L, Iordache LA, Noor H. Voltammetric Investigation of Ferulic Acid at Disposable Pencil Graphite Electrode. Micromachines. 2023; 14(10):1951. https://doi.org/10.3390/mi14101951
Chicago/Turabian StyleDavid, Iulia Gabriela, Dana Elena Popa, Mihaela Buleandra, Silvia Nicoleta Codreanu, Lorelei Croitoru, Laura Andreea Iordache, and Hassan Noor. 2023. "Voltammetric Investigation of Ferulic Acid at Disposable Pencil Graphite Electrode" Micromachines 14, no. 10: 1951. https://doi.org/10.3390/mi14101951
APA StyleDavid, I. G., Popa, D. E., Buleandra, M., Codreanu, S. N., Croitoru, L., Iordache, L. A., & Noor, H. (2023). Voltammetric Investigation of Ferulic Acid at Disposable Pencil Graphite Electrode. Micromachines, 14(10), 1951. https://doi.org/10.3390/mi14101951