A Compact Stacked RF Energy Harvester with Multi-Condition Adaptive Energy Management Circuits
Abstract
:1. Introduction
- (1)
- A novel compact rectenna with a stacked structure.
- (2)
- A novel multi-condition adaptive energy management circuit for RF energy supporting two operating modes and two voltage outputs.
- (3)
- We conducted ambient RF energy harvesting validation for the proposed RF energy harvester. The validation results indicate that the proposed RF energy harvester can drive a wall clock (30 cm in diameter) at 10 cm distance and a hygrometer at 122 cm distance with a home router as the transmitting source.
2. Design of the RF Energy Harvester
2.1. Design of the Antenna
2.2. Design of the Rectifier
2.3. Design of the Multi-Condition Adaptive Energy Management Circuits
3. Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, C.; Ding, Y.; Eid, A.; Hester, J.G.; He, X.; Bahr, R.; Georgiadis, A.; Goussetis, G.; Tentzeris, M.M. Advances in wirelessly powered backscatter communications: From antenna/RF circuitry design to printed flexible electronics. Proc. IEEE 2021, 110, 171–192. [Google Scholar] [CrossRef]
- Shinohara, N. History and innovation of wireless power transfer via microwaves. IEEE J. Microwaves 2021, 1, 218–228. [Google Scholar] [CrossRef]
- Sudevalayam, S.; Kulkarni, P. Energy harvesting sensor nodes: Survey and implications. IEEE Commun. Surv. Tutor. 2010, 13, 443–461. [Google Scholar] [CrossRef]
- Ullah, M.A.; Keshavarz, R.; Abolhasan, M.; Lipman, J.; Esselle, K.P.; Shariati, N. A Review on Antenna Technologies for Ambient RF Energy Harvesting and Wireless Power Transfer: Designs, Challenges and Applications. IEEE Access 2022, 10, 17231–17267. [Google Scholar] [CrossRef]
- Ahmed, A.E.; Abdullah, K.; Habaebi, M.H.; Ramli, H.A.; Asnawi, A.L. Informatics, Rf energy harvesting wireless networks: Challenges and opportunities. Indones. J. Electr. Eng. Inform. 2021, 9, 101–113. [Google Scholar]
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Tutorials, Wireless networks with RF energy harvesting: A contemporary survey. IEEE Commun. Surv. Tutor. 2014, 17, 757–789. [Google Scholar] [CrossRef]
- Li, P.; Long, Z.; Yang, Z. RF energy harvesting for batteryless and maintenance-free condition monitoring of railway tracks. IEEE Internet Things J. 2020, 8, 3512–3523. [Google Scholar] [CrossRef]
- Lu, P.; Song, C.; Huang, K.M. A compact rectenna design with wide input power range for wireless power transfer. IEEE Trans. Power Electron. 2020, 35, 6705–6710. [Google Scholar] [CrossRef]
- Trikolikar, A.; Lahudkar, S. A review on design of compact rectenna for rf energy harvesting. In Proceedings of the 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2–4 July 2020; IEEE: New York, NY, USA, 2020; pp. 651–654. [Google Scholar]
- Quddious, A.; Zahid, S.; Tahir, F.A.; Antoniades, M.A.; Vryonides, P.; Nikolaou, S.J. Dual-band compact rectenna for UHF and ISM wireless power transfer systems. IEEE Trans. Antennas Propag. 2020, 69, 2392–2397. [Google Scholar] [CrossRef]
- Almoneef, T.S. Design of a rectenna array without a matching network. IEEE Access 2020, 8, 109071–109079. [Google Scholar] [CrossRef]
- Koohestani, M.; Tissier, J.; Latrach, M. A miniaturized printed rectenna for wireless RF energy harvesting around 2.45 GHz. AEU-Int. J. Electron. Commun. 2020, 127, 153478. [Google Scholar] [CrossRef]
- Nwalike, E.D.; Ibrahim, K.A.; Crawley, F.; Qin, Q.; Luk, P.; Luo, Z. Harnessing Energy for Wearables: A Review of Radio Frequency Energy Harvesting Technologies. Energies 2023, 16, 5711. [Google Scholar] [CrossRef]
- Falkenstein, E.; Costinett, D.; Zane, R.; Popovic, Z. Far-field RF-powered variable duty cycle wireless sensor platform. IEEE Trans. Circuits Syst. II Express Briefs 2011, 58, 822–826. [Google Scholar] [CrossRef]
- Popović, Z.; Falkenstein, E.A.; Costinett, D.; Zane, R. Low-power far-field wireless powering for wireless sensors. Proc. IEEE 2013, 101, 1397–1409. [Google Scholar] [CrossRef]
- La Rosa, R.; Dehollain, C.; Livreri, P. Advanced monitoring systems based on battery-less asset tracking modules energized through rf wireless power transfer. Sensors 2020, 20, 3020. [Google Scholar] [CrossRef] [PubMed]
- Verma, G.; Sharma, V. A novel RF energy harvester for event-based environmental monitoring in Wireless Sensor Networks. IEEE Internet Things J. 2021, 9, 3189–3203. [Google Scholar] [CrossRef]
- La Rosa, R.; Dehollain, C.; Pellitteri, F.; Miceli, R.; Livreri, P. A Battery-free Asset Monitoring System based on RF Wireless Power Transfer. In Proceedings of the 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON), Virtual, 16–18 June 2020; IEEE: New York, NY, USA, 2020; pp. 181–186. [Google Scholar]
- Loubet, G.; Takacs, A.; Dragomirescu, D. Implementation of a battery-free wireless sensor for cyber-physical systems dedicated to structural health monitoring applications. IEEE Access 2019, 7, 24679–24690. [Google Scholar] [CrossRef]
- Varghese, B.; John, N.E.; Sreelal, S.; Gopal, K. Design and development of an RF energy harvesting wireless sensor node (EH-WSN) for aerospace applications. Procedia Comput. Sci. 2016, 93, 230–237. [Google Scholar] [CrossRef]
- Vyas, R.J.; Cook, B.B.; Kawahara, Y.; Tentzeris, M.M. E-WEHP: A batteryless embedded sensor-platform wirelessly powered from ambient digital-TV signals. IEEE Trans. Microw. Theory Tech. 2013, 61, 2491–2505. [Google Scholar] [CrossRef]
- BQ25504; Texas Instrum: Milpitas, CA, USA, 2011; Available online: https://www.ti.com.cn/product/zh-cn/BQ25504?keyMatch=BQ25504&tisearch=search-everything&usecase=GPN (accessed on 7 September 2023).
- Lin, W.; Ziolkowski, R.W. Electrically small, single-substrate Huygens dipole rectenna for ultracompact wireless power transfer applications. IEEE Trans. Antennas Propag. 2020, 69, 1130–1134. [Google Scholar] [CrossRef]
- Muhammad, S.; Tiang, J.J.; Wong, S.K.; Smida, A.; Ghayoula, R.; Iqbal, A. A dual-band ambient energy harvesting rectenna design for wireless power communications. IEEE Access 2021, 9, 99944–99953. [Google Scholar] [CrossRef]
- Song, C.; Huang, Y.; Carter, P.; Zhou, J.; Yuan, S.; Xu, Q.; Kod, M. A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Trans. Antennas Propag. 2016, 64, 3160–3171. [Google Scholar] [CrossRef]
- Wagih, M.; Hilton, G.S.; Weddell, A.S.; Beeby, S. Dual-band dual-mode textile antenna/rectenna for simultaneous wireless information and power transfer (SWIPT). IEEE Trans. Antennas Propag. 2021, 69, 6322–6332. [Google Scholar] [CrossRef]
Parameters of the Antenna | W0 | L0 | W1 | L1 | W2 | L2 | Wsub | Lsub | R1 | R2 |
Value (mm) | 43 | 33.5 | 4.15 | 15 | 5 | 10 | 53 | 43.5 | 8 | 10 |
Parameters of the Rectifier | W3 | L3 | L4 | L5 | L6 | L7 | ||||
Value (mm) | 3.05 | 11.5 | 6.45 | 12.57 | 8.6 | 6.41 |
Leakage Current/nA | Leakage Power/nW | Conversion Efficiency (η) | |
---|---|---|---|
LDO | 3 | 3 × Vin (PqLDO) | VLOAD3/Vin (ηLDO) |
BUCK | 60 | 60 × VLOAD1 (PqBUCK) | 0.8 (ηBUCK) |
PMIC | 330 | 330 × Vin | 0.8 (ηPMIC) |
R1 + R2 | Vin/(R1 + R2) | Vin × Vin/(R1 + R2) (PR1+R2) | |
R3 + R4 | Vin/(R3 + R4) | Vin × Vin/(R3 + R4) (PR3+R4) | |
Hcomp | 150 | 150 × VLOAD2 (PHComp) |
Ref. (Year) | Total Size | Maximum Conversion Efficiency of Rectifier (%) | Maximum Conversion Efficiency of Energy Management Circuits (%) | Output Voltage (V) |
---|---|---|---|---|
[7] (2021) | − | 25% at 1 dBm | 82% | 3−4 V |
[17] (2021) | 125 mm × 140 mm | About 10% at −2 dBm | − | 1.5−2.7 V |
[19] (2019) | 150 mm × 90 mm × 50 mm | About 25% at (1 μW/cm2) | − | 2.3−5.25 V |
[14] (2011) | 60 mm × 75 mm (antenna) − (rectifier) | 55% at (200 μW/cm2) | 70% | 2.5 V |
This work (2023) | 53 mm × 43.5 mm × 5.9 mm | 33.8% at 5 dBm | 93.56% | 1.5 V, 2.85−2.45 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Li, M.; Chen, X.; Zhao, Y.; Xiao, L.; Zhang, Y. A Compact Stacked RF Energy Harvester with Multi-Condition Adaptive Energy Management Circuits. Micromachines 2023, 14, 1967. https://doi.org/10.3390/mi14101967
Liu X, Li M, Chen X, Zhao Y, Xiao L, Zhang Y. A Compact Stacked RF Energy Harvester with Multi-Condition Adaptive Energy Management Circuits. Micromachines. 2023; 14(10):1967. https://doi.org/10.3390/mi14101967
Chicago/Turabian StyleLiu, Xiaoqiang, Mingxue Li, Xinkai Chen, Yiheng Zhao, Liyi Xiao, and Yufeng Zhang. 2023. "A Compact Stacked RF Energy Harvester with Multi-Condition Adaptive Energy Management Circuits" Micromachines 14, no. 10: 1967. https://doi.org/10.3390/mi14101967
APA StyleLiu, X., Li, M., Chen, X., Zhao, Y., Xiao, L., & Zhang, Y. (2023). A Compact Stacked RF Energy Harvester with Multi-Condition Adaptive Energy Management Circuits. Micromachines, 14(10), 1967. https://doi.org/10.3390/mi14101967