Selective Sensing in Microbial Fuel Cell Biosensors: Insights from Toxicity-Adapted and Non-Adapted Biofilms for Pb(II) and Neomycin Sulfate Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Design and Construction of MFC-Based Biosensors
2.3. Inoculation and Start-Up of Pollutant-Adapted Biofilm-Based MFCs
2.4. Electrochemical Characterization
2.5. Real-Time Toxicity Detection in Wastewater
3. Results and Discussion
3.1. Toxicity Effect on Biofilm Growth and Power Generation
3.2. Electroativity of a Mature Biofilm Adapted to Different Concentrations of Toxicity
3.3. Effect of Salinity on MFC Performance
3.4. MFC Biosensor Response to Toxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Khan, A.J.; Akhter, G.; Gabriel, H.F.; Shahid, M. Anthropogenic Effects of Coal Mining on Ecological Resources of the Central Indus Basin, Pakistan. Int. J. Environ. Res. Public Health 2020, 17, 1255. [Google Scholar] [CrossRef]
- Xu, M.; Li, J.; Liu, B.; Yang, C.; Hou, H.; Hu, J.; Yang, J.; Xiao, K.; Liang, S.; Wang, D. The Evaluation of Long Term Performance of Microbial Fuel Cell Based Pb Toxicity Shock Sensor. Chemosphere 2021, 270, 129455. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, X.; Liang, P.; Liu, P.; Huang, X. Microbial Fuel Cell Sensors for Water Quality Early Warning Systems: Fundamentals, Signal Resolution, Optimization and Future Challenges. Renew. Sustain. Energy Rev. 2018, 81, 292–305. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.H. Occurrence and Fate of Emerging Contaminants in Municipal Wastewater Treatment Plants from Different Geographical Regions—A Review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef] [PubMed]
- Sadkowska, J.; Caban, M.; Chmielewski, M.; Stepnowski, P.; Kumirska, J. The Use of Gas Chromatography for Determining Pharmaceutical Residues in Clinical, Cosmetic, Food and Environmental Samples in the Light of the Requirements of Sustainable Development. Arch. Environ. Prot. 2019, 45, 42–49. [Google Scholar] [CrossRef]
- Liu, B.; Lei, Y.; Li, B. A Batch-Mode Cube Microbial Fuel Cell Based “Shock” Biosensor for Wastewater Quality Monitoring. Biosens. Bioelectron. 2014, 62, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Adekunle, A.; Rickwood, C.; Tartakovsky, B. Online Monitoring of Heavy Metal–Related Toxicity Using Flow-through and Floating Microbial Fuel Cell Biosensors. Environ. Monit. Assess. 2020, 192, 52. [Google Scholar] [CrossRef]
- Haddour, N.; Azri, Y.M. Recent Advances on Electrochemical Sensors Based on Electroactive Bacterial Systems for Toxicant Monitoring: A Minireview. Electroanalysis 2023, 35, e202200202. [Google Scholar] [CrossRef]
- Bataillou, G.; Lee, C.; Monnier, V.; Gerges, T.; Sabac, A.; Vollaire, C.; Haddour, N. Cedar Wood—Based Biochar: Properties, Characterization, and Applications as Anodes in Microbial Fuel Cell. Appl. Biochem. Biotechnol. 2022, 94, 4169–4186. [Google Scholar] [CrossRef] [PubMed]
- Paitier, A.; Haddour, N.; Gondran, C. Effect of Contact Area and Shape of Anode Current Collectors on Bacterial Community Structure in Microbial Fuel Cells. Molecules 2022, 27, 2245. [Google Scholar] [CrossRef] [PubMed]
- Godain, A.; Haddour, N.; Fongarland, P. Bacterial Competition for the Anode Colonization under Different External Resistances in Microbial Fuel Cells. Catalysts 2022, 12, 176. [Google Scholar] [CrossRef]
- Paitier, A.; Godain, A.; Lyon, D.; Haddour, N.; Vogel, T.M.; Monier, J.M. Microbial Fuel Cell Anodic Microbial Population Dynamics during MFC Start-Up. Biosens. Bioelectron. 2017, 92, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Bensalah, F.; Julien, P.; Haddour, N.; Erouel, M.; Buret, F.; Khirouni, K. Carbon Nano-Fiber/PDMS Composite Used as Corrosion-Resistant Coating for Copper Anodes in Microbial Fuel Cells. Nanomaterials 2021, 11, 3144. [Google Scholar] [CrossRef]
- Saadi, M.; Pézard, J.; Haddour, N.; Erouel, M.; Vogel, T.M.; Khirouni, K. Stainless Steel Coated with Carbon Nanofiber/PDMS Composite as Anodes in Microbial Fuel Cells. Mater. Res. Express 2020, 7, 25504. [Google Scholar] [CrossRef]
- Olias, L.G.; Di Lorenzo, M. Microbial Fuel Cells for In-Field Water Quality Monitoring. RSC Adv. 2021, 11, 16307–16317. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Lai, B.; Tang, X. Microbial Fuel Cell-Based Biosensors. Biosensors 2019, 9, 92. [Google Scholar] [CrossRef]
- Li, J.; Hu, J.; Yang, C.; Pu, W.; Hou, H.; Xu, J.; Liu, B.; Yang, J. Enhanced Detection of Toxicity in Wastewater Using a 2D Smooth Anode Based Microbial Fuel Cell Toxicity Sensor. RSC Adv. 2019, 9, 8700–8706. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, L.; Zhang, Y.; Yu, Y. Microbial Fuel Cell-Based Biosensor for Simultaneous Test of Sodium Acetate and Glucose in a Mixed Solution. Int. J. Environ. Res. Public Health 2022, 19, 12297. [Google Scholar] [CrossRef]
- Wang, S.H.; Wang, J.W.; Zhao, L.T.; Abbas, S.Z.; Yang, Z.; Yong, Y.C. Soil Microbial Fuel Cell Based Self-Powered Cathodic Biosensor for Sensitive Detection of Heavy Metals. Biosensors 2023, 13, 145. [Google Scholar] [CrossRef]
- Sun, J.Z.; Kingori, G.P.; Si, R.W.; Zhai, D.D.; Liao, Z.H.; Sun, D.Z.; Zheng, T.; Yong, Y.C. Microbial Fuel Cell-Based Biosensors for Environmental Monitoring: A Review. Water Sci. Technol. 2015, 71, 801–809. [Google Scholar] [CrossRef]
- Yi, Y.; Xie, B.; Zhao, T.; Li, Z.; Stom, D.; Liu, H. Effect of External Resistance on the Sensitivity of Microbial Fuel Cell Biosensor for Detection of Different Types of Pollutants. Bioelectrochemistry 2019, 125, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Coradin, T.; Laberty-Robert, C. Effect of Anode Polarization on Biofilm Formation and Electron Transfer in Shewanella Oneidensis/Graphite Felt Microbial Fuel Cells. Bioelectrochemistry 2018, 120, 1–9. [Google Scholar] [CrossRef]
- Katuri, K.P.; Rengaraj, S.; Kavanagh, P.; Flaherty, V.O. On Graphite Rods; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Roy, J.N.; Babanova, S.; Garcia, K.E.; Cornejo, J.; Ista, L.K.; Atanassov, P. Electrochimica Acta Catalytic Biofilm Formation by Shewanella Oneidensis MR-1 and Anode Characterization by Expanded Uncertainty. Electrochim. Acta 2014, 126, 3–10. [Google Scholar] [CrossRef]
- Jung, S. Impedance Analysis of Geobacter Sulfurreducens PCA, Shewanella Oneidensis MR-1, and Their Coculture in Bioeletrochemical Systems. Int. J. Electrochem. Sci. 2012, 7, 11091–11100. [Google Scholar] [CrossRef]
- Chouler, J.; Di Lorenzo, M. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells Be the Answer? Biosensors 2015, 5, 450–470. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Luo, H.; Shi, Z.; Wu, Y.; Liu, H. Substrate Salinity: A Critical Factor Regulating the Performance of Microbial Fuel Cells, a Review. Sci. Total Environ. 2021, 763, 143021. [Google Scholar] [CrossRef]
- Tremouli, A.; Martinos, M.; Lyberatos, G. The Effects of Salinity, PH and Temperature on the Performance of a Microbial Fuel Cell. Waste Biomass Valorization 2017, 8, 2037–2043. [Google Scholar] [CrossRef]
- Godain, A.; Spurr, M.W.A.; Boghani, H.C.; Premier, G.C.; Yu, E.H.; Head, I.M. Detection of 4-Nitrophenol, a Model Toxic Compound, Using Multi-Stage Microbial Fuel Cells. Front. Environ. Sci. 2020, 8, 5. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, H.; Logan, B.E. Increased Performance of Single-Chamber Microbial Fuel Cells Using an Improved Cathode Structure. Electrochem. Commun. 2006, 8, 489–494. [Google Scholar] [CrossRef]
- Feng, C.; Li, F.; Liu, H.; Lang, X.; Fan, S. A Dual-Chamber Microbial Fuel Cell with Conductive Film-Modified Anode and Cathode and Its Application for the Neutral Electro-Fenton Process. Electrochim. Acta 2010, 55, 2048–2054. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanam, A.; Cecillon, S.; Mohammadi, H.; Amine, A.; Buret, F.; Haddour, N. Selective Sensing in Microbial Fuel Cell Biosensors: Insights from Toxicity-Adapted and Non-Adapted Biofilms for Pb(II) and Neomycin Sulfate Detection. Micromachines 2023, 14, 2027. https://doi.org/10.3390/mi14112027
Ghanam A, Cecillon S, Mohammadi H, Amine A, Buret F, Haddour N. Selective Sensing in Microbial Fuel Cell Biosensors: Insights from Toxicity-Adapted and Non-Adapted Biofilms for Pb(II) and Neomycin Sulfate Detection. Micromachines. 2023; 14(11):2027. https://doi.org/10.3390/mi14112027
Chicago/Turabian StyleGhanam, Abdelghani, Sebastien Cecillon, Hasna Mohammadi, Aziz Amine, François Buret, and Naoufel Haddour. 2023. "Selective Sensing in Microbial Fuel Cell Biosensors: Insights from Toxicity-Adapted and Non-Adapted Biofilms for Pb(II) and Neomycin Sulfate Detection" Micromachines 14, no. 11: 2027. https://doi.org/10.3390/mi14112027
APA StyleGhanam, A., Cecillon, S., Mohammadi, H., Amine, A., Buret, F., & Haddour, N. (2023). Selective Sensing in Microbial Fuel Cell Biosensors: Insights from Toxicity-Adapted and Non-Adapted Biofilms for Pb(II) and Neomycin Sulfate Detection. Micromachines, 14(11), 2027. https://doi.org/10.3390/mi14112027