Controllable Carrier Doping in Two-Dimensional Materials Using Electron-Beam Irradiation and Scalable Oxide Dielectrics
Abstract
:1. Introduction
2. Device Structure and Methods
3. Results and Discussion
3.1. E-Beam Doping Effects in Graphene FET Devices on a Standard SiO2/Si Substrate
3.2. E-Beam Doping Effects in Graphene FET Devices with Additional Al2O3 Dielectric Layer
3.3. E-Beam Doping Effects in MoS2 FET Devices with Additional Al2O3 Dielectric Layer
3.4. Response Time, Stability, and Repeatability of E-Beam Doping Effects
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Sebastian, A.; Pop, E.; McClellan, C.J.; Franklin, A.D.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A.V.; Appenzeller, J.; et al. Transistors Based on Two-Dimensional Materials for Future Integrated Circuits. Nat. Electron. 2021, 4, 786–799. [Google Scholar] [CrossRef]
- Williams, J.R.; DiCarlo, L.; Marcus, C.M. Quantum Hall Effect in a Gate-Controlled p-n Junction of Graphene. Science 2007, 317, 638–641. [Google Scholar] [CrossRef] [PubMed]
- Özyilmaz, B.; Jarillo-Herrero, P.; Efetov, D.; Abanin, D.A.; Levitov, L.S.; Kim, P. Electronic Transport and Quantum Hall Effect in Bipolar Graphene p-n-p Junctions. Phys. Rev. Lett. 2007, 99, 166804. [Google Scholar] [CrossRef]
- Huard, B.; Sulpizio, J.A.; Stander, N.; Todd, K.; Yang, B.; Goldhaber-Gordon, D. Transport Measurements Across a Tunable Potential Barrier in Graphene. Phys. Rev. Lett. 2007, 98, 236803. [Google Scholar] [CrossRef]
- Liu, G.; Velasco, J., Jr.; Bao, W.; Lau, C.N. Fabrication of Graphene p-n-p Junctions with Contactless Top Gates. Appl. Phys. Lett. 2008, 92, 203103. [Google Scholar] [CrossRef]
- Dubey, S.; Singh, V.; Bhat, A.K.; Parikh, P.; Grover, S.; Sensarma, R.; Tripathi, V.; Sengupta, K.; Deshmukh, M.M. Tunable Superlattice in Graphene To Control the Number of Dirac Points. Nano Lett. 2013, 13, 3990–3995. [Google Scholar] [CrossRef]
- Sebastian, A.; Pendurthi, R.; Choudhury, T.H.; Redwing, J.M.; Das, S. Benchmarking Monolayer MoS2 and WS2 Field-Effect Transistors. Nat. Commun. 2021, 12, 693. [Google Scholar] [CrossRef]
- Xia, Y.; Xie, W.; Ruden, P.P.; Frisbie, C.D. Carrier Localization on Surfaces of Organic Semiconductors Gated with Electrolytes. Phys. Rev. Lett. 2010, 105, 036802. [Google Scholar] [CrossRef]
- Ye, J.; Craciun, M.F.; Koshino, M.; Russo, S.; Inoue, S.; Yuan, H.; Shimotani, H.; Morpurgo, A.F.; Iwasa, Y. Accessing the Transport Properties of Graphene and Its Multilayers at High Carrier Density. Proc. Natl. Acad. Sci. 2011, 108, 13002–13006. [Google Scholar] [CrossRef]
- Shi, W.; Ye, J.; Zhang, Y.; Suzuki, R.; Yoshida, M.; Miyazaki, J.; Inoue, N.; Saito, Y.; Iwasa, Y. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating. Sci. Rep. 2015, 5, 12534. [Google Scholar] [CrossRef]
- Ju, L.; Velasco, J.; Huang, E.; Kahn, S.; Nosiglia, C.; Tsai, H.-Z.; Yang, W.; Taniguchi, T.; Watanabe, K.; Zhang, Y.; et al. Photoinduced Doping in Heterostructures of Graphene and Boron Nitride. Nat. Nanotech 2014, 9, 348–352. [Google Scholar] [CrossRef]
- Velasco, J., Jr.; Ju, L.; Wong, D.; Kahn, S.; Lee, J.; Tsai, H.-Z.; Germany, C.; Wickenburg, S.; Lu, J.; Taniguchi, T.; et al. Nanoscale Control of Rewriteable Doping Patterns in Pristine Graphene/Boron Nitride Heterostructures. Nano Lett. 2016, 16, 1620–1625. [Google Scholar] [CrossRef]
- Seo, S.-Y.; Moon, G.; Okello, O.F.N.; Park, M.Y.; Han, C.; Cha, S.; Choi, H.; Yeom, H.W.; Choi, S.-Y.; Park, J.; et al. Reconfigurable Photo-Induced Doping of Two-Dimensional van Der Waals Semiconductors Using Different Photon Energies. Nat. Electron. 2021, 4, 38–44. [Google Scholar] [CrossRef]
- Aftab, S.; Iqbal, M.Z.; Iqbal, M.W. Programmable Photo-Induced Doping in 2D Materials. Adv. Mater. Interfaces 2022, 9, 2201219. [Google Scholar] [CrossRef]
- Shi, W.; Kahn, S.; Jiang, L.; Wang, S.-Y.; Tsai, H.-Z.; Wong, D.; Taniguchi, T.; Watanabe, K.; Wang, F.; Crommie, M.F.; et al. Reversible Writing of High-Mobility and High-Carrier-Density Doping Patterns in Two-Dimensional van Der Waals Heterostructures. Nat. Electron. 2020, 3, 99–105. [Google Scholar] [CrossRef]
- Shi, W.; Kahn, S.; Leconte, N.; Taniguchi, T.; Watanabe, K.; Crommie, M.; Jung, J.; Zettl, A. High-Order Fractal Quantum Oscillations in Graphene/BN Superlattices in the Extreme Doping Limit. Phys. Rev. Lett. 2023, 130, 186204. [Google Scholar] [CrossRef]
- Childres, I.; Jauregui, L.A.; Foxe, M.; Tian, J.; Jalilian, R.; Jovanovic, I.; Chen, Y.P. Effect of Electron-Beam Irradiation on Graphene Field Effect Devices. Appl. Phys. Lett. 2010, 97, 173109. [Google Scholar] [CrossRef]
- Yu, X.; Shen, Y.; Liu, T.; Wu, T.; Jie Wang, Q. Photocurrent Generation in Lateral Graphene P-n Junction Created by Electron-Beam Irradiation. Sci. Rep. 2015, 5, 12014. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jadwiszczak, J.; Keane, D.; Chen, Y.; Yu, D.; Zhang, H. Programmable Graphene Doping via Electron Beam Irradiation. Nanoscale 2017, 9, 8657–8664. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Anwar, N.; Siddique, S.; Iqbal, M.W.; Hussain, T. Formation of Pn-Junction with Stable n-Doping in Graphene Field Effect Transistors Using e-Beam Irradiation. Opt. Mater. 2017, 69, 254–258. [Google Scholar] [CrossRef]
- Stará, V.; Procházka, P.; Mareček, D.; Šikola, T.; Čechal, J. Ambipolar Remote Graphene Doping by Low-Energy Electron Beam Irradiation. Nanoscale 2018, 10, 17520–17524. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, S.-H.; Jo, I.H.; Seo, J.; Yoo, Y.-E.; Kim, J.H. Influence of Growth Temperature on Dielectric Strength of Al2O3 Thin Films Prepared via Atomic Layer Deposition at Low Temperature. Sci. Rep. 2022, 12, 5124. [Google Scholar] [CrossRef] [PubMed]
- Fallahazad, B.; Lee, K.; Lian, G.; Kim, S.; Corbet, C.M.; Ferrer, D.A.; Colombo, L.; Tutuc, E. Scaling of Al2O3 Dielectric for Graphene Field-Effect Transistors. Appl. Phys. Lett. 2012, 100, 093112. [Google Scholar] [CrossRef]
- Touski, S.B.; Hosseini, M. A Comparative Study of Substrates Disorder on Mobility in the Graphene Nanoribbon: Charged Impurity, Surface Optical Phonon, Surface Roughness. Phys. E Low-Dimens. Syst. Nanostructures 2020, 116, 113763. [Google Scholar] [CrossRef]
- Komsa, H.-P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A.V. Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping. Phys. Rev. Lett. 2012, 109, 035503. [Google Scholar] [CrossRef]
- Taylor, D.M.; Al-Jassar, A.A. Investigation of Space Charges in SiO2 Thin Films Using a Pulsed Electron Beam. J. Phys. D Appl. Phys. 1984, 17, 1493. [Google Scholar] [CrossRef]
- Curtis, O.L., Jr.; Srour, J.R.; Chiu, K.Y. Hole and Electron Transport in SiO2 Films. J. Appl. Phys. 2003, 45, 4506–4513. [Google Scholar] [CrossRef]
- Ausman, G.A., Jr.; McLean, F.B. Electron−hole Pair Creation Energy in SiO2. Appl. Phys. Lett. 2008, 26, 173–175. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Guo, Z.; Lan, Q.; Song, W.; Zhong, Z.; Yang, K.; Zhao, T.; Huang, H.; Zhang, C.; Shi, W. Controllable Carrier Doping in Two-Dimensional Materials Using Electron-Beam Irradiation and Scalable Oxide Dielectrics. Micromachines 2023, 14, 2125. https://doi.org/10.3390/mi14112125
Wang L, Guo Z, Lan Q, Song W, Zhong Z, Yang K, Zhao T, Huang H, Zhang C, Shi W. Controllable Carrier Doping in Two-Dimensional Materials Using Electron-Beam Irradiation and Scalable Oxide Dielectrics. Micromachines. 2023; 14(11):2125. https://doi.org/10.3390/mi14112125
Chicago/Turabian StyleWang, Lu, Zejing Guo, Qing Lan, Wenqing Song, Zhipeng Zhong, Kunlin Yang, Tuoyu Zhao, Hai Huang, Cheng Zhang, and Wu Shi. 2023. "Controllable Carrier Doping in Two-Dimensional Materials Using Electron-Beam Irradiation and Scalable Oxide Dielectrics" Micromachines 14, no. 11: 2125. https://doi.org/10.3390/mi14112125
APA StyleWang, L., Guo, Z., Lan, Q., Song, W., Zhong, Z., Yang, K., Zhao, T., Huang, H., Zhang, C., & Shi, W. (2023). Controllable Carrier Doping in Two-Dimensional Materials Using Electron-Beam Irradiation and Scalable Oxide Dielectrics. Micromachines, 14(11), 2125. https://doi.org/10.3390/mi14112125