Dispersive Modeling of Normal and Cancerous Cervical Cell Responses to Nanosecond Electric Fields in Reversible Electroporation Using a Drift-Step Rectifier Diode Generator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Three-Dimensional Construction of Normal and Cancerous Cervical Cells
2.2. Electroporation Model of Cervical Cells
2.2.1. Modeling of Cervical Cell Permittivity
2.2.2. Cervical Cell Pore Formation during Electroporation
2.2.3. Electromagnetic Modeling of Cervical Cells
2.2.4. Electrodeformation Model of Cervical Cells
2.2.5. Temperature Development during RE
2.2.6. High-Frequency Electric Field Using DSRD Generator Design
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TMV | Transmembrane voltage |
MST | Maxwell stress tensor |
RE | Reversible electroporation |
DSRD | Drift-step rectifier diode |
References
- Miklavcic, D.; Puc, M. Electroporation, Wiley Encyclopedia of Biomedical Engineering; John Wiley: New York, NY, USA, 2006. [Google Scholar]
- Kotnik, T.; Miklavčič, D. Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys. J. 2006, 90, 480–491. [Google Scholar] [CrossRef]
- Kotnik, T.; Rems, L.; Tarek, M.; Miklavčič, D. Membrane electroporation and electropermeabilization: Mechanisms and models. Ann. Rev. Biophys. 2019, 48, 63–91. [Google Scholar] [CrossRef]
- Yarmush, M.L.; Golberg, A.; Sersa, G.; Kotnik, T.; Miklavcic, D. Electroporation-based technologies for medicine: Princi- ples, applications and challenges. Ann. Rev. Biomed. Eng. 2014, 16, 295–320. [Google Scholar] [CrossRef]
- De Angelis, A.; Denzi, A.; Merla, C.; Andre, F.M.; Mir, L.M.; Apollonio, F.; Liberti, M. Confocal Microscopy Improves 3D Microdosimetry Applied to Nanoporation Experiments Targeting Endoplasmic Reticulum. Front. Bioeng. Biotechnol. 2020, 8, 552261. [Google Scholar] [CrossRef]
- Merla, C.; Paffi, A.; Apollonio, F.; Leveque, P.; d’Inzeo, G.; Liberti, M. Microdosimetry for Nanosecond Pulsed Electric Field Applications: A Parametric Study for a Single Cell. IEEE Trans. Biomed. Eng. 2011, 58, 1294–1302. [Google Scholar] [CrossRef]
- Krassowska, W.; Filev, P.D. Modeling electroporation in a single cell. Biophys. J. 2007, 92, 404–417. [Google Scholar] [CrossRef]
- Salimi, E.; Thomson, D.J.; Bridges, G.E. Membrane dielectric dispersion in nanosecond pulsed electroporation of biological cells. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 1256–1265. [Google Scholar] [CrossRef]
- Pucihar, G.; Miklavcic, D.; Kotnik, T. A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans. Biomed. Eng. 2009, 56, 1491–1501. [Google Scholar] [CrossRef]
- Mescia, L.; Chiapperino, M.A.; Bia, P.; Gielis, J.; Caratelli, D. Modeling of Electroporation Induced by Pulsed Electric Fields in Irregularly Shaped Cells. IEEE Trans. Biomed. Eng. 2018, 65, 414–423. [Google Scholar] [CrossRef]
- Chiapperino, M.A.; Bia, P.; Caratelli, D.; Gielis, J.; Mescia, L.; Dermol-Černe, J.; Miklavčič, D. Nonlinear Dispersive Model of Electroporation for Irregular Nucleated Cells. Bioelectromagnetics 2019, 40, 331–342. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, S.; Deng, Y.; Zhang, Y.; Yin, L.; Zheng, W. An improved method for soft tissue modeling. Biomed. Signal Process. Control 2021, 65, 102367. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Zheng, W.; Yin, L.; Hu, R.; Yang, B. Endoscope image mosaic based on pyramid ORB. Biomed. Signal Process. Control 2022, 71, 103261. [Google Scholar] [CrossRef]
- Chiapperino, M.A.; Mescia, L.; Bia, P.; Starešinič, B.; Čemažar, M.; Novickij, V.; Tabašnikov, A.; Smith, S.; Dermol-Černe, J.; Miklavčič, D. Experimental and Numerical Study of Electroporation Induced by Long Monopolar and Short Bipolar Pulses on Realistic 3D Irregularly Shaped Cells. IEEE Trans. Biomed. Eng. 2020, 67, 2781–2788. [Google Scholar] [CrossRef]
- Lu, S.; Yang, B.; Xiao, Y.; Liu, S.; Liu, M.; Yin, L.; Zheng, W. Iterative reconstruction of low-dose CT based on differential sparse. Biomed. Signal Process. Control 2023, 79, 104204. [Google Scholar] [CrossRef]
- Lu, S.; Liu, S.; Hou, P.; Yang, B.; Liu, M.; Yin, L.; Zheng, W. Soft Tissue Feature Tracking Based on Deep Matching Network. Comput. Model. Eng. Sci. 2023, 136, 363–379. [Google Scholar] [CrossRef]
- Denzi, A.; Camera, F.; Merla, C.; Benassi, B.; Consales, C.; Paffi, A.; Apollonio, F.; Liberti, M. A Microdosimetric Study of Electropulsation on Multiple Realistically Shaped Cells: Effect of Neighbours. J. Membr. Biol. 2016, 249, 691–701. [Google Scholar] [CrossRef]
- Hu, B.; Das, P.; Lv, X.; Shi, M.; Aa, J.; Wang, K.; Duan, L.; Gilbert, J.A.; Nie, Y.; Wu, X.L. Effects of ’Healthy’ Fecal Microbiota Transplantation against the Deterioration of Depression in Fawn-Hooded Rats. mSystems 2022, 7, e21822. [Google Scholar] [CrossRef]
- Lu, S.; Yang, J.; Yang, B.; Yin, Z.; Liu, M.; Yin, L.; Zheng, W. Analysis and Design of Surgical Instrument Localization Algorithm. Comput. Model. Eng. Sci. 2023, 137, 669–685. [Google Scholar] [CrossRef]
- Kumar, M.; Mishra, A. Reversible electroporation study of realistic normal and cancerous cervical cells model using avalanche transistor-based nano pulse generator. IOP Biomed. Phys. Eng. Express 2021, 7, 065011. Available online: http://iopscience.iop.org/article/10.1088/2057-1976/ac240b (accessed on 12 March 2023). [CrossRef]
- Yang, Y.; Moser, M.A.; Zhang, E.; Zhang, W.; Zhang, B. Development of a statistical model for cervical cancer cell death with irreversible electroporation in vitro. PLoS ONE 2018, 13, e0195561. [Google Scholar] [CrossRef]
- Mitsutake, K.; Satoh, A.; Mine, S.; Abe, K.; Katsuki, S.; Akiyama, H. Effect of pulsing sequence of nanosecond pulsed electric fields on viability of HeLa S3 cells. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 337–342. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, R.; Wu, Z.; Song, S.; Cheng, L.; Zhu, R. Deep learning-based predictive identification of neural stem cell differentiation. Nat. Commun. 2021, 12, 2614. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Zhou, W. Balance Cell Apoptosis and Pyroptosis of Caspase-3-Activating Chemotherapy for Better Antitumor Therapy. Cancers 2023, 15, 26. [Google Scholar] [CrossRef]
- Walker, D.C.; Brown, B.H.; Hose, D.R.; Smallwood, R.H. Modelling the electrical impedivity of normal and premalignant cervical tissue. Electron. Lett. 2000, 36, 1603–1604. [Google Scholar] [CrossRef]
- 1, D.C.W.; Brown, B.H.; Smallwood, R.H.; Hose, D.R.; Jones, D.M. Modelled current distribution in cervical squamous tissue. Physiol. Meas. 2002, 23, 159–168. [Google Scholar] [CrossRef]
- Gómez-Gálvez, P.; Vicente-Munuera, P.; Tagua, A.; Forja, C.; Castro, A.M.; Letrán, M.; Valencia-Expósito, A.; Grima, C.; Bermúdez-Gallardo, M.; Serrano-Pérez-Higueras, Ó.; et al. Scutoids are a geometrical solution to three-dimensional packing of epithelia. Nat. Commun. 2018, 9, 2960. [Google Scholar] [CrossRef]
- Chang, Q.Q.; Chen, C.Y.; Chen, Z.; Chang, S. LncRNA PVT1 promotes proliferation and invasion through enhancing Smad3 expression by sponging miR-140-5p in cervical cancer. Radiol. Oncol. 2019, 53, 443–452. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Liu, H.; Zhong, D.; Yin, K.; Li, Y.; Zhu, L.; Xu, C.; Li, M.; Wang, C. Bone marrow stromal cell-derived exosomal circular RNA improves diabetic foot ulcer wound healing by activating the nuclear factor erythroid 2-related factor 2 pathway and inhibiting ferroptosis. Diabet. Med. 2023, 40, e15031. [Google Scholar] [CrossRef]
- Balidemaj, E.; De Boer, P.; Van Lier, A.L.; Remis, R.F.; Stalpers, L.J.; Westerveld, G.H.; Nederveen, A.J.; van den Berg, C.A.; Crezee, J. In vivo electric conductivity of cervical cancer patients based on B maps at 3T MRI. Phys. Med. Biol. 2016, 61, 1596–1607. [Google Scholar] [CrossRef]
- Tang, L.; Li, J.; Bao, M.; Xiang, J.; Chen, Y.; Wang, Y. Genetic association between HER2 and ESR2 polymorphisms and ovarian cancer: A meta-analysis. Oncotargets Ther. 2018, 11, 1055–1066. [Google Scholar] [CrossRef]
- Mao, X.; Chen, Y.; Lu, X.; Jin, S.; Jiang, P.; Deng, Z.; Zhu, X.; Cai, Q.; Wu, C.; Kang, S. Tissue resident memory T cells are enriched and dysfunctional in effusion of patients with malignant tumor. J. Cancer 2023, 14, 1223–1231. [Google Scholar] [CrossRef]
- Heeren, T.; Ueno, T.; Wang, D.; Namihira, T.; Katsuki, S.; Akiyama, H. Novel dual Marx Generator for microplasma applications. IEEE Trans. Plasma Sci. 2005, 33, 1205–1209. [Google Scholar] [CrossRef]
- Merensky, L.M. Fast switching of drift step recovery diodes based on all epi-Si growth. In Proceedings of the 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, Tel Aviv, Israel, 4–6 November 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Kesar, A.S.; Sharabani, Y.; Merensky, L.M.; Shafir, I.; Sher, A. Drift-Step-Recovery Diode Characterization by a Bipolar Pulsed Power Circuit. IEEE Trans. Plasma Sci. 2012, 40, 3100–3104. [Google Scholar] [CrossRef]
- Geng, L.; Feng, J.; Sun, Q.; Liu, J.; Hua, W.; Li, J.; Ao, Z.; You, K.; Guo, Y.; Liao, F.; et al. Nanomechanical clues from morphologically normal cervical squamous cells could improve cervical cancer screening. Nanoscale 2015, 7, 15589. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; He, Y.; Li, Q.; Gao, G.; Tong, G. Regulation of Apelin-13 on Bcl-2 and Caspase-3 and Its Effects on Adipocyte Apoptosis. Evid.-Based Complement. Altern. Med. 2021, 2021, 1687919. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Y.; Yu, L.; Hu, X. Overexpression of SOCS4 inhibits proliferation and migration of cervical cancer cells by regulating JAK1/STAT3 signaling pathway. Eur. J. Gynaecol. Oncol. 2021, 42, 554–560. [Google Scholar] [CrossRef]
- Shamoon, D.; Dermol-Černe, J.; Rems, L.; Reberšek, M.; Kotnik, T.; Lasquellec, S.; Brosseau, C.; Miklavčič, D. Assessing the electro-deformation and electro-poration of biological cells using a three-dimensional finite element model. Appl. Phys. Lett. 2019, 114, 063701. [Google Scholar] [CrossRef]
- Guo, F.; Qian, K.; Deng, H.; Li, X. Multiphysics analysis of nsPEF induced electrodeformation in a dispersive cell model. Appl. Phys. Lett. 2021, 118, 083701. [Google Scholar] [CrossRef]
- Chen, J.; Abdelgawad, M.; Yu, L.; Shakiba, N.; Chien, W.-Y.; Lu, Z.; Geddie, W.R.; Jewett, M.A.S.; Sun, Y. Electrodeformation for single cell mechanical characterization. In Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 23–27 January 2011; pp. 1119–1122. [Google Scholar] [CrossRef]
- Xu, H.; Wang, H.; Zhao, W.; Fu, S.; Li, Y.; Ni, W.; Xin, Y.; Li, W.; Yang, C.; Bai, Y.; et al. SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating Snail mRNA homeostasis in hepatocellular carcinoma. Theranostics 2020, 10, 5671–5686. [Google Scholar] [CrossRef]
- He, B.; Zhang, Y.; Zhou, Z.; Wang, B.; Liang, Y.; Lang, J.; Lin, H.; Bing, P.; Yu, L.; Sun, D.; et al. A Neural Network Framework for Predicting the Tissue-of-Origin of 15 Common Cancer Types Based on RNA-Seq Data. Front. Bioeng. Biotechnol. 2020, 8, 737. [Google Scholar] [CrossRef]
- Available online: http://mde-lab.aegean.gr/index.php/downloads (accessed on 10 March 2023).
- Khorasani, A. The Effect of Conductivity Changes on Temperature Rise During Irreversible Electroporation. Front. Biomed. Technol. 2020, 7, 178–185. [Google Scholar] [CrossRef]
- Davalos, R.V.; Mir, L.M.; Rubinsky, B. Tissue Ablation with Irreversible Electroporation. Ann. Biomed. Eng. 2005, 33, 223–231. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, B.; Zhong, J.; Han, G.; Zhang, J.; Zhou, H.; Mao, T.; Liu, Y. The behavior between fluid and structure from coupling system of bile, bile duct, and polydioxanone biliary stent: A numerical method. Med. Eng. Phys. 2023, 113, 103966. [Google Scholar] [CrossRef]
Cell Type | Cell | Nucleus | ||||
---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | |
Intermediate | 52 ± 10 m | 52 ± 14 m | 15 ± 1.1 m | 8.4 ± 1.1 m | 8.4 ± 1.1 m | 5.8 ± 1.4 m |
CIN1 | 41 ± 10 m | 41 ± 10 m | 14 ± 1.2 m | 7.3 ± 2.2 m | 7.3 ± 2.1 m | 5.4 ± 3.3 m |
CIN2 | 25 ± 6 m | 25 ± 6 m | 17 ± 1.0 m | 8.1 ± 1.7 m | 8.1 ± 1.7m | 6.9 ± 1.7 m |
CIN3 | 18 ± 3.2 m | 18 ± 3.2 m | 16 ± 1.8 m | 9.3 ± 1.7 m | 8.6 ± 1.7 m | 8.6 ± 1.7 m |
13.9 pF m | High-frequency permittivity [11] | |
8.85 pF m | Dielectric permittivity of vacuum [11] | |
72 | Relative permittivity of medium [25,26] | |
86 | Relative permittivity of medium [25,26] | |
145 | Relative permittivity of medium [25,26] | |
1.2 S m | Conductivity of medium [25,26] | |
9.5 nS m | Passive conductivity of [11] | |
0.6 S m | Conductivity of [25,26] | |
0.8 S m | Conductivity of [25,26] | |
q | 2.46 | Electroporation constant [11] |
224 mV | Characteristic voltage of electroporation [11] | |
Pore-creation density [11] | ||
m | Equilibrium pore density [11] | |
h | 5 nm | Plasma membrane thickness [40] |
3.2 | Energy barrier inside the pore [40] | |
T | 295 K | Temperature |
0.15 | Relative length of pore entrance area [11] | |
1050 | Uniform density for all regions [40] | |
1000 Pa | Young’s modulus for extracellular medium [40] | |
500 Pa | Young’s modulus for normal cell cytoplasm [36] | |
500 Pa | Young’s modulus for normal cell plasma membrane [36] | |
300 Pa | Young’s modulus for cancer cell cytoplasm [36] | |
300 Pa | Young’s modulus for cancer cell plasma membrane [36] | |
0.4 | Poisson ratio for extracellular medium [40] | |
0.4 | Poisson ratio for cytoplasm [40] | |
0.4 | Poisson ratio for plasma membrane [40] | |
1500 Pa | Branch shear modulus of membrane [40] | |
t | 0.1 s | Branch viscous relaxation time of membrane [40] |
0.41 W/mK | Thermal conductivity of extracellular fluid [45] | |
3780 J/kg-K | Heat capacity at a constant pressure of the extracellular fluid [45] | |
0.6 W/mK | Thermal conductivity of the cytoplasm [45] | |
4718 J/kg-K | Heat capacity at a constant pressure of the cytoplasm [45] | |
0.3 W/mK | Thermal conductivity of the nucleus [45] | |
3000 J/kg-K | Heat capacity at a constant pressure of the nucleus [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, M.; Kumar, S.; Chakrabartty, S.; Poulose, A.; Mostafa, H.; Goyal, B. Dispersive Modeling of Normal and Cancerous Cervical Cell Responses to Nanosecond Electric Fields in Reversible Electroporation Using a Drift-Step Rectifier Diode Generator. Micromachines 2023, 14, 2136. https://doi.org/10.3390/mi14122136
Kumar M, Kumar S, Chakrabartty S, Poulose A, Mostafa H, Goyal B. Dispersive Modeling of Normal and Cancerous Cervical Cell Responses to Nanosecond Electric Fields in Reversible Electroporation Using a Drift-Step Rectifier Diode Generator. Micromachines. 2023; 14(12):2136. https://doi.org/10.3390/mi14122136
Chicago/Turabian StyleKumar, Mayank, Sachin Kumar, Shubhro Chakrabartty, Alwin Poulose, Hala Mostafa, and Bhawna Goyal. 2023. "Dispersive Modeling of Normal and Cancerous Cervical Cell Responses to Nanosecond Electric Fields in Reversible Electroporation Using a Drift-Step Rectifier Diode Generator" Micromachines 14, no. 12: 2136. https://doi.org/10.3390/mi14122136
APA StyleKumar, M., Kumar, S., Chakrabartty, S., Poulose, A., Mostafa, H., & Goyal, B. (2023). Dispersive Modeling of Normal and Cancerous Cervical Cell Responses to Nanosecond Electric Fields in Reversible Electroporation Using a Drift-Step Rectifier Diode Generator. Micromachines, 14(12), 2136. https://doi.org/10.3390/mi14122136