Untreated vs. Treated Carbon Felt Anodes: Impacts on Power Generation in Microbial Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Pretreatment and Modification of Carbon Felt-Based Anodes
2.3. Fabrication of Reference Electrodes
2.4. MFCs Configuration, Inoculation, and Operation
2.5. Electrochemical and SEM Characterization
3. Results and Discussion
3.1. Surface Morphology of CF Electrodes
3.2. Electrochemical Properties of Unmodified and Modified CF Electrodes
3.3. Performance of the MFC Equipped with Various Anode Materials
3.3.1. Biofilm Growth on Various CF-Based Anode Surfaces
3.3.2. Electrochemical Activity of the Developed Biofilms
3.3.3. Polarization Curves at Biofilm Maturation Conditions for Power Generation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bataillou, G.; Lee, C.; Monnier, V.; Gerges, T.; Sabac, A.; Vollaire, C.; Haddour, N. Cedar Wood—Based Biochar: Properties, Characterization, and Applications as Anodes in Microbial Fuel Cell. Appl. Biochem. Biotechnol. 2022, 194, 4169–4186. [Google Scholar] [CrossRef] [PubMed]
- Paitier, A.; Haddour, N.; Gondran, C. Effect of Contact Area and Shape of Anode Current Collectors on Bacterial Community Structure in Microbial Fuel Cells. Molecules 2022, 27, 2245. [Google Scholar] [CrossRef] [PubMed]
- Paitier, A.; Godain, A.; Lyon, D.; Haddour, N.; Vogel, T.M.; Monier, J.M. Microbial Fuel Cell Anodic Microbial Population Dynamics during MFC Start-Up. Biosens. Bioelectron. 2017, 92, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Godain, A.; Haddour, N.; Fongarland, P. Bacterial Competition for the Anode Colonization under Different External Resistances in Microbial Fuel Cells. Catalysts 2022, 12, 176. [Google Scholar] [CrossRef]
- Haddour, N.; Azri, Y.M. Recent Advances on Electrochemical Sensors Based on Electroactive Bacterial Systems for Toxicant Monitoring: A Minireview. Electroanalysis 2023, 35, e202200202. [Google Scholar] [CrossRef]
- Shabangu, K.P.; Bakare, B.F.; Bwapwa, J.K. Microbial Fuel Cells for Electrical Energy: Outlook on Scaling-Up and Application Possibilities towards South African Energy Grid. Sustainability 2022, 14, 14268. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Ying, Z.; Xia, Y.; You, J. Boosting O-Xylene Removal and Power Generation in an Airlift Microbial Fuel Cell System. RSC Adv. 2023, 13, 20314–20320. [Google Scholar] [CrossRef]
- Fonseca, E.U.; Yang, W.; Wang, X.; Rossi, R.; Logan, B.E. Comparison of Different Chemical Treatments of Brush and Flat Carbon Electrodes to Improve Performance of Microbial Fuel Cells. Bioresour. Technol. 2021, 342, 125932. [Google Scholar] [CrossRef]
- Duarte, K.D.Z.; Kwon, Y. In Situ Carbon Felt Anode Modification via Codeveloping Saccharomyces Cerevisiae Living-Template Titanium Dioxide Nanoclusters in a Yeast-Based Microbial Fuel Cell. J. Power Sources 2020, 474, 228651. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, M.; Ma, Z.; Zhao, N.; Zhang, K.; Song, H.; Li, X. Improving Electron Transport Efficiency and Power Density by Continuous Carbon Fibers as Anode in the Microbial Fuel Cell. J. Electroanal. Chem. 2020, 857, 113743. [Google Scholar] [CrossRef]
- Tang, X.; Cui, Y.; Liu, L. Pyrolyzing Pyrite and Microalgae for Enhanced Anode Performance in Microbial Fuel Cells. Int. J. Hydrogen Energy 2021, 46, 37460–37468. [Google Scholar] [CrossRef]
- Simeon, I.M.; Weig, A.; Freitag, R. Optimization of Soil Microbial Fuel Cell for Sustainable Bio-Electricity Production: Combined Effects of Electrode Material, Electrode Spacing, and Substrate Feeding Frequency on Power Generation and Microbial Community Diversity. Biotechnol. Biofuels Bioprod. 2022, 15, 124. [Google Scholar] [CrossRef] [PubMed]
- Miran, F.; Mumtaz, M.W.; Mukhtar, H.; Akram, S. Iron Oxide–Modified Carbon Electrode and Sulfate-Reducing Bacteria for Simultaneous Enhanced Electricity Generation and Tannery Wastewater Treatment. Front. Bioeng. Biotechnol. 2021, 9, 747434. [Google Scholar] [CrossRef] [PubMed]
- Fatima, M.; Kiros, Y.; Farooq, R.; Lindström, R.W. Low-Cost Single Chamber MFC Integrated with Novel Lignin-Based Carbon Fiber Felt Bioanode for Treatment of Recalcitrant Azo Dye. Front. Energy Res. 2021, 9, 672817. [Google Scholar] [CrossRef]
- Kim, M.; Song, Y.E.; Li, S.; Kim, J.R. Microwave-Treated Expandable Graphite Granule for Enhancing the Bioelectricity Generation of Microbial Fuel Cells. J. Electrochem. Sci. Technol. 2021, 12, 297–301. [Google Scholar] [CrossRef]
- Saadi, M.; Pézard, J.; Haddour, N.; Erouel, M.; Vogel, T.M.; Khirouni, K. Stainless Steel Coated with Carbon Nanofiber/PDMS Composite as Anodes in Microbial Fuel Cells. Mater. Res. Express 2020, 7, 25504. [Google Scholar] [CrossRef]
- Bensalah, F.; Julien, P.; Haddour, N.; Erouel, M.; Buret, F.; Khirouni, K. Carbon Nano-Fiber/PDMS Composite Used as Corrosion-Resistant Coating for Copper Anodes in Microbial Fuel Cells. Nanomaterials 2021, 11, 3144. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, X.; Shi, Z.; Wang, X.; Wang, Z.; Li, C.M. Electrospinning Mo-Doped Carbon Nanofibers as an Anode to Simultaneously Boost Bioelectrocatalysis and Extracellular Electron Transfer in Microbial Fuel Cells. Materials 2023, 16, 2479. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, Q.; Wang, X.; Logan, B.E. Treatment of Carbon Fiber Brush Anodes for Improving Power Generation in Air-Cathode Microbial Fuel Cells. J. Power Sources 2010, 195, 1841–1844. [Google Scholar] [CrossRef]
- Rabbow, T.J.; Trampert, M.; Pokorny, P.; Binder, P.; Whitehead, A.H. Variability within a Single Type of Polyacrylonitrile-Based Graphite Felt after Thermal Treatment. Part II: Chemical Properties. Electrochim. Acta 2015, 173, 24–30. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, H.; Logan, B.E. Increased Performance of Single-Chamber Microbial Fuel Cells Using an Improved Cathode Structure. Electrochem. Commun. 2006, 8, 489–494. [Google Scholar] [CrossRef]
- Zhong, L.; Yan, Z.; Wang, H.; Wang, L. Hydrazine Hydrate Induced Three-Dimensional Interconnected Porous Flower-like 3D-Nico-SDBS-LDH Microspheres for High-Performance Supercapacitor. Materials 2022, 15, 1405. [Google Scholar] [CrossRef] [PubMed]
- Youssry, M.; Al-Ruwaidhi, M.; Zakeri, M.; Zakeri, M. Physical Functionalization of Multi-Walled Carbon Nanotubes for Enhanced Dispersibility in Aqueous Medium. Emergent Mater. 2020, 3, 25–32. [Google Scholar] [CrossRef]
- Liu, X.W.; Sun, X.F.; Huang, Y.X.; Sheng, G.P.; Wang, S.G.; Yu, H.Q. Carbon Nanotube/Chitosan Nanocomposite as a Biocompatible Biocathode Material to Enhance the Electricity Generation of a Microbial Fuel Cell. Energy Environ. Sci. 2011, 4, 1422–1427. [Google Scholar] [CrossRef]
- Plekhanova, Y.; Tarasov, S.; Kolesov, V.; Kuznetsova, I.; Signore, M.; Quaranta, F.; Reshetilov, A. Effects of Polymer Matrices and Carbon Nanotubes on the Generation of Electric Energy in a Microbial Fuel Cell. Membranes 2018, 8, 99. [Google Scholar] [CrossRef]
- Ma, C.Y.; Hou, C.H. Enhancing the Water Desalination and Electricity Generation of a Microbial Desalination Cell with a Three-Dimensional Macroporous Carbon Nanotube-Chitosan Sponge Anode. Sci. Total Environ. 2019, 675, 41–50. [Google Scholar] [CrossRef]
- Xu, H.; Wang, L.; Wen, Q.; Chen, Y.; Qi, L.; Huang, J.; Tang, Z. A 3D Porous NCNT Sponge Anode Modified with Chitosan and Polyaniline for High-Performance Microbial Fuel Cell. Bioelectrochemistry 2019, 129, 144–153. [Google Scholar] [CrossRef]
- Feng, C.; Li, F.; Liu, H.; Lang, X.; Fan, S. A Dual-Chamber Microbial Fuel Cell with Conductive Film-Modified Anode and Cathode and Its Application for the Neutral Electro-Fenton Process. Electrochim. Acta 2010, 55, 2048–2054. [Google Scholar] [CrossRef]
- Tahir, K.; Miran, W.; Jang, J.; Shahzad, A.; Moztahida, M.; Kim, B.; Lee, D.S. A Novel MXene-Coated Biocathode for Enhanced Microbial Electrosynthesis Performance. Chem. Eng. J. 2020, 381, 122687. [Google Scholar] [CrossRef]
- Im, C.H.; Song, Y.E.; Jeon, B.; Kim, J.R. Biologically Activated Graphite Fiber Electrode for Autotrophic Acetate Production from CO 2 in a Bioelectrochemical System. Carbon Lett. 2016, 20, 76–80. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, M.; Zhang, H.; Yang, S.; Song, K.Y.; Yin, R.; Zhang, W. Effects of Hydrophilicity, Adhesion Work, and Fluid Flow on Biofilm Formation of PDMS in Microfluidic Systems. ACS Appl. Bio Mater. 2020, 3, 8386–8394. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Coradin, T.; Laberty-Robert, C. Effect of Anode Polarization on Biofilm Formation and Electron Transfer in Shewanella Oneidensis/Graphite Felt Microbial Fuel Cells. Bioelectrochemistry 2018, 120, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Katuri, K.P.; Rengaraj, S.; Kavanagh, P.; Flaherty, V.O. Charge Transport through Geobacter sulfurreducens Biofilms Grown on Graphite Rods. Langmuir 2012, 28, 7904–7913. [Google Scholar] [CrossRef]
- Roy, J.N.; Babanova, S.; Garcia, K.E.; Cornejo, J.; Ista, L.K.; Atanassov, P. Electrochimica Acta Catalytic Biofilm Formation by Shewanella Oneidensis MR-1 and Anode Characterization by Expanded Uncertainty. Electrochim. Acta 2014, 126, 3–10. [Google Scholar] [CrossRef]
- Jung, S. Impedance Analysis of Geobacter Sulfurreducens PCA, Shewanella Oneidensis MR-1, and Their Coculture in Bioeletrochemical Systems. Int. J. Electrochem. Sci. 2012, 7, 11091–11100. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Zeng, L.; Cui, D.; Xiang, X.; Li, W. Polyaniline/Mesoporous Tungsten Trioxide Composite as Anode Electrocatalyst for High-Performance Microbial Fuel Cells. Biosens. Bioelectron. 2013, 41, 582–588. [Google Scholar] [CrossRef]
- Zhong, D.; Liao, X.; Liu, Y.; Zhong, N.; Xu, Y. Enhanced Electricity Generation Performance and Dye Wastewater Degradation of Microbial Fuel Cell by Using a Petaline NiO@ Polyaniline-Carbon Felt Anode. Bioresour. Technol. 2018, 258, 125–134. [Google Scholar] [CrossRef]
- Mahmoud, M.; El-Khatib, K.M. Three-Dimensional Graphitic Mesoporous Carbon-Doped Carbon Felt Bioanodes Enables High Electric Current Production in Microbial Fuel Cells. Int. J. Hydrogen Energy 2020, 45, 32413–32422. [Google Scholar] [CrossRef]
- Zhu, W.; Yao, M.; Gao, H.; Wen, H.; Zhao, X.; Zhang, J.; Bai, H. Enhanced Extracellular Electron Transfer between Shewanella Putrefaciens and Carbon Felt Electrode Modified by Bio-Reduced Graphene Oxide. Sci. Total Environ. 2019, 691, 1089–1097. [Google Scholar] [CrossRef]
- Tahir, K.; Miran, W.; Jang, J.; Maile, N.; Shahzad, A.; Moztahida, M.; Ghani, A.A.; Kim, B.; Lee, D.S. MnCo2O4 Coated Carbon Felt Anode for Enhanced Microbial Fuel Cell Performance. Chemosphere 2021, 265, 129098. [Google Scholar] [CrossRef]
- Tahir, K.; Miran, W.; Jang, J.; Maile, N.; Shahzad, A.; Moztahida, M.; Ghani, A.A.; Kim, B.; Jeon, H.; Lim, S.R.; et al. Nickel Ferrite/MXene-Coated Carbon Felt Anodes for Enhanced Microbial Fuel Cell Performance. Chemosphere 2021, 268, 128784. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Malla, S.K.; Gupta, P. A Review of Design, Poly (3, 4-ethylenedioxythiophene)-Modified Graphite Felt and Carbon Cloth Anodes for Use in Microbial Fuel Cells. ChemistrySelect 2022, 7, e202103920. [Google Scholar] [CrossRef]
- Sumisha, A.; Haribabu, K. Modification of Graphite Felt Using Nano Polypyrrole and Polythiophene for Microbial Fuel Cell Applications-a Comparative Study. Int. J. Hydrogen Energy 2018, 43, 3308–3316. [Google Scholar] [CrossRef]
CF | A-CF | CNF-SDBS@CF | CNF-SDBS@A-CF | CNF-CS@CF | CNF-CS@A-CF | |
---|---|---|---|---|---|---|
OCP (mV) | −520 | −540 | −530 | −535 | −520 | −520 |
Power density (Pmax) ± SD (W m−2) | 3.4 ± 0.3 | 2.9 ± 0.2 | 2.7 ± 0.2 | 2.6 ± 0.2 | 2.5 ± 0.2 | 2.4 ± 0.2 |
Current density (Jmax) ± SD (A m−2) | 26.2 ± 2.3 | 21 ± 1.8 | 17.4 ± 1.6 | 19.8 ± 1.8 | 16.5 ± 1.5 | 16.2 ± 1.4 |
No | Anode | Modification | MFC Configuration | OCP (mV) | JSC (A m−2) | Pmax (W m−2) | Ref. |
---|---|---|---|---|---|---|---|
1 | Carbon felt | PANI/m-WO3 a | Double-chamber MFC | 586 | 3.7 | 0.980 | [36] |
2 | Carbon felt | NiO@PANI b | Double-chamber MFC | 725 | 1.5 | 1.078 | [37] |
3 | NCNT c/sponge | CS-NCNT-PANI d | Double-chamber MFC | 779 | 6.6 | 1.891 | [27] |
4 | Carbon felt | GMC e | Double-chamber MFC | 800 | 0.3 | 0.070 | [38] |
5 | Carbon felt | Br-GO f | Double-chamber MFC | 630 | 1.0 | 0.240 | [39] |
6 | Carbon felt | P/MC g | Double-chamber MFC | 850 | 4.4 | 1.267 | [11] |
7 | Carbon felt | MnCo2O4 h | Double-chamber MFC | 780 | 3.5 | 0.945 | [40] |
8 | Carbon felt | NiFe2O4/MXene i | Double-chamber MFC | 925 | 3.5 | 1.385 | [41] |
9 | Graphite felt | PEDOT j | Double-chamber MFC | 1460 | 3.8 | 0.003 | [42] |
10 | Graphite felt | Ppy-NP k | Single-chamber MFC | 842 | 6.8 | 1.220 | [43] |
PTh-NP l | 644 | 2.2 | 0.800 | ||||
11 | Pristine plain graphite fiber brush | Double-chamber MFC | 760 | 7.6 | 2.35 | [8] | |
12 | Pristine carbon felt | Double-chamber MFC | 760 | 3.6 | 1.46 | [8] | |
13 | Pristine carbon felt | Single-chamber MFC | 550 | 26.2 | 3.4 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanam, A.; Cecillon, S.; Sabac, A.; Mohammadi, H.; Amine, A.; Buret, F.; Haddour, N. Untreated vs. Treated Carbon Felt Anodes: Impacts on Power Generation in Microbial Fuel Cells. Micromachines 2023, 14, 2142. https://doi.org/10.3390/mi14122142
Ghanam A, Cecillon S, Sabac A, Mohammadi H, Amine A, Buret F, Haddour N. Untreated vs. Treated Carbon Felt Anodes: Impacts on Power Generation in Microbial Fuel Cells. Micromachines. 2023; 14(12):2142. https://doi.org/10.3390/mi14122142
Chicago/Turabian StyleGhanam, Abdelghani, Sebastien Cecillon, Andrei Sabac, Hasna Mohammadi, Aziz Amine, François Buret, and Naoufel Haddour. 2023. "Untreated vs. Treated Carbon Felt Anodes: Impacts on Power Generation in Microbial Fuel Cells" Micromachines 14, no. 12: 2142. https://doi.org/10.3390/mi14122142
APA StyleGhanam, A., Cecillon, S., Sabac, A., Mohammadi, H., Amine, A., Buret, F., & Haddour, N. (2023). Untreated vs. Treated Carbon Felt Anodes: Impacts on Power Generation in Microbial Fuel Cells. Micromachines, 14(12), 2142. https://doi.org/10.3390/mi14122142