A Review of Potential Electrochemical Applications in Buildings for Energy Capture and Storage
Abstract
:1. Introduction
2. Building Skins and Functions
3. Distributed Renewable Energy Technologies
4. Building-Integrated Photovoltaic (BIPV) Technologies
5. The Importance of Energy Storage Applications in Buildings
6. Electrochemical Applications in Buildings
6.1. Traditional Batteries and Flow Batteries
6.2. Supercapacitors
6.3. Fuel Cells
6.3.1. Solid Oxide Fuel Cells (SOFCs)
6.3.2. Alkaline Fuel Cells (AFCs)
6.3.3. Phosphoric Acid Fuel Cells (PAFCs)
6.3.4. Molten Carbonate Fuel Cells (MCFCs)
6.3.5. Direct Methanol Fuel Cells (DMFCs)
6.3.6. Proton Exchange Membrane Fuel Cells (PEMFCs)
6.3.7. Microbial Fuel Cells (MFCs)
Fuel Cell Type | Common Electrolyte | Operational Temperature | Stack Size | Electrical Efficiency (LHV) | Advantage | Disadvantage |
---|---|---|---|---|---|---|
SOFC | YO-stabilized ZrO [104] | 600–1000 °C [101] | 1 kW–2 MW [111] | 80–85% [101] | Electrolyte is solid; reuses heat waste; fast kinetics [97,99,103] | High operating temperature [102] |
AFC | KOH retained in matrix [108] | <100 °C [97,111] | 1–100 kW [111] | 60–90% [102,111] | Flexible to use a wide range of catalysts; cost-friendly; quick reaction [110,112] | Very sensitive to CO2 [113] |
PAFC | Liquid phosphoric acid in SiC [114] | 150–200 °C [115,116,117] | 5–400 kW [111] | 40% | Tolerant to CO, heat waste can be recycled [111] | Expensive catalyst [108] |
MCFC | Molten carbonate in LiAlO [97] | 600–700 °C [120] | 300 kW–3 MW [111] | 50% [122] | Cheap catalyst; reuses heat waste [111] | High operating temperature causes damage to materials [120] |
DMFC | Polymer electrolyte membranes [135] | 60–100 °C [97] | 10 MW [136] | 40–90% [137] | Uses methanol as fuel; low operational temperature | Produce greenhouse gas [123] |
PEMFC | Polymer electrolyte membrane | <80 °C [125] | <1–100 kW [111] | 45–82% [130] | Solid electrolyte; low operational temperature; rapid start-up [124,125] | Difficult thermal management and water management; sensitive to contaminants [111] |
MFC | Proton exchange membrane [132] | 4–55 °C [130,138,139] | 258 W m (Power output) [140] | Microorganisms as fuel [131] | Very low efficiency |
6.4. Two Electrochemical Energy Storage Applications for Building Skins in This Research
Electrochemical Device Type | Subtype | Examples or Studies | Special Features | Advantages | Disadvantages |
---|---|---|---|---|---|
Batteries | Lithium-ion batteries | [141] | Round trip efficiency 82–89% (pack level) | Long life cycle; high energy density [77] | Degradation; Safety concern [142] |
Redox flow batteries | PV-RFB (pack level) [84,85,86] | The system attained 80% advertised efficiency | High-efficiency energy storage system for microgrid | Operating cost still relatively high | |
Redox flow batteries | PV-Gravity storage and RFB (pack level) [88] | Energy supply from renewable resource is 47.77% | |||
Supercapacitors | Organic solar cell-supercapacitor (device level) [92] | Highest energy density 1.6 × 10 Wh cm | Harvesting and storing energy within a single device | Low energy conversion efficiency of 2% | |
Perovskite solar cell-supercapacitor (device level) [93] | Energy density 4.27 Wh cm | Harvesting and storing energy within a single device | Low energy conversion efficiency | ||
3-D-printed supercapacitor bricks (device level) [94] | Energy density 2.64 Wh kg | Good cycle life: Maintained 81.4% of the initial value following 6000 charge/discharge cycles | |||
Fuel cells | Alkaline | PWWR Jupiter 1.0 (pack level) [102] | Efficiency of 90% | High efficiency and quick reaction | Sensitive to CO |
Phosphoric acid | UTC power (pack level) [118] | 40–42% electrical efficiency | Relatively low operating temperature | ||
Molten carbonate | Santa-Rita Jail (pack level) [122] | Heat as byproduct provided 18% heating for the building | Slow startup | ||
Proton exchange membrane | PEM combined heat and power system (pack level) [128] | Efficiency of 45–82%; used as cogeneration system of buildings | Low operating temperature | Expensive | |
Microbial | Microbial fuel cell bricks (device level) [134] | Used waste water and urine to generate electricity with a power of 1.2 mW | Integrated with bricks | Low efficiency |
Reversible PEM Fuel Cells | Redox Flow Batteries | |
---|---|---|
Reactants | Gas | Liquid |
Operational temperature | <120 °C [91] | −20 °C to 50 °C [147] |
Toxicity | No toxic gas emission | Sometimes include toxic materials |
Flammability | Yes | No |
Components needed | Power cells; water and gas tubes; hydrogen containers; wires; pumps | Power cells; tubes; electrolyte solution containers; wires; pumps |
Roundtrip efficiency | 50% [148] | 70–80% [149] |
Life cycle and life time | >5000 cycles [148] | 1500–15,000 cycles [149] |
Energy density (Wh/kg) | 400 Wh/kg [150] | 10–35 Wh/kg [151,152] |
Power density | 10–500 W/kg [153] | 100–166 W/kg [152] |
7. Fuel Cells and Fuel Storage Safety Concerns
8. BIPV and Electrochemical Storage Applications Opportunities and Constraints
8.1. Components Needed and Hydrogen Storage Methods on Building Skins
- Photovoltaic panels
- RPEMFCs or RFBs
- Containers for storing hydrogen or electrolyte solutions
- Electrical wiring for connections
- Gas and liquid (water or solution) conduits
- Additional components: insulation materials, air/water-tight fittings, and more.
- Positioning a storage container between the photovoltaic panel and the RPEMFC (RFB). This configuration allows a single panel to handle all energy-related tasks: harvesting, conversion, and storage.
- An alternative plan involves providing each row of panels with its own dedicated storage container.
- The storage container could be situated in the building’s basement.
8.2. Shading System
8.3. Rainscreen
8.4. Integration with Curtain Wall for Use as Spandrel Glass
8.5. Double-Skin (Ventilated Cavity)
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AFC | Alkaline fuel cell |
BIPV | Building-integrated photovoltaics |
DER | Distributed energy resource |
DMFC | Direct methanol fuel cell |
EDL | Electric double-layer |
MCFC | Molten carbonate fuel cell |
OSC | Organic solar cells |
PAFC | Phosphoric acid fuel cell |
PV | Photovoltaic |
RFB | Redox flow battery |
RPEMFC | Reversible proton-exchange-membrane fuel cell |
SOFC | Solid oxide fuel cell |
References
- Use of Energy Explained. Available online: https://www.eia.gov/energyexplained/use-of-energy/ (accessed on 6 July 2023).
- Where Greenhouse Gases Come From. Available online: https://www.eia.gov/energyexplained/energy-and-the-environment/where-greenhouse-gases-come-from.php (accessed on 6 July 2023).
- Sources of Energy. Available online: https://www.eia.gov/energyexplained/what-is-energy/sources-of-energy.php (accessed on 6 July 2023).
- Chenari, B.; Dias Carrilho, J.; Gameiro da Silva, M. Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renew. Sustain. Energy Rev. 2016, 59, 1426–1447. [Google Scholar] [CrossRef]
- Prignon, M.; Van Moeseke, G. Factors influencing airtightness and airtightness predictive models: A literature review. Energy Build. 2017, 146, 87–97. [Google Scholar] [CrossRef]
- Rakha, T.; El Masri, Y.; Chen, K.; Panagoulia, E.; De Wilde, P. Building envelope anomaly characterization and simulation using drone time-lapse thermography. Energy Build. 2022, 259, 111754. [Google Scholar] [CrossRef]
- Rakha, T.; Liberty, A.; Gorodetsky, A.; Kakillioglu, B.; Velipasalar, S. Campus as a lab for computer vision-based heat mapping drones: A case study for multiple building envelope inspection using unmanned aerial systems (UAS). In Proceedings of the 7th International Building Physics Conference IBPC 2018, Syracuse, NY, USA, 23 September 2018. [Google Scholar]
- Zheng, X.; Cooper, E.; Gillott, M.; Wood, C. A practical review of alternatives to the steady pressurisation method for determining building airtightness. Renew. Sustain. Energy Rev. 2020, 132, 110049. [Google Scholar] [CrossRef] [PubMed]
- Al-Homoud, M.S. Performance characteristics and practical applications of common building thermal insulation materials. Build. Environ. 2005, 40, 353–366. [Google Scholar] [CrossRef]
- Jelle, B.P. Traditional, state-of-the-art and future thermal building insulation materials and solutions—Properties, requirements and possibilities. Energy Build. 2011, 43, 2549–2563. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, L.; Yu, Y.; Sun, J. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93–114. [Google Scholar] [CrossRef]
- Jami, T.; Karade, S.; Singh, L. A review of the properties of hemp concrete for green building applications. J. Clean. Prod. 2019, 239, 117852. [Google Scholar] [CrossRef]
- Xing, Y.; Brewer, M.; El-Gharabawy, H.; Griffith, G.; Jones, P. Growing and testing mycelium bricks as building insulation materials. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Shaikh, P.H.; Nor, N.B.; Nallagownden, P.; Elamvazuthi, I.; Ibrahim, T. A review on optimized control systems for building energy and comfort management of smart sustainable buildings. Renew. Sustain. Energy Rev. 2014, 34, 409–429. [Google Scholar] [CrossRef]
- Ahmed, A.; Ge, T.; Peng, J.; Yan, W.; Tee, B.T.; You, S. Assessment of the renewable energy generation towards net-zero energy buildings: A review. Energy Build. 2022, 256, 111755. [Google Scholar] [CrossRef]
- Bot, K.; Ramos, N.M.; Almeida, R.; Pereira, P.F.; Monteiro, C. Energy performance of buildings with on-site energy generation and storage—An integrated assessment using dynamic simulation. J. Build. Eng. 2019, 24, 100769. [Google Scholar] [CrossRef]
- Cuce, E. Toward multi-functional PV glazing technologies in low/zero carbon buildings: Heat insulation solar glass—Latest developments and future prospects. Renew. Sustain. Energy Rev. 2016, 60, 1286–1301. [Google Scholar] [CrossRef]
- Wurm, J.; Pauli, M. SolarLeaf: The world’s first bioreactive facade. Archit. Res. Q. 2016, 20, 73–79. [Google Scholar] [CrossRef]
- Epstein, M.J.; Buhovac, A.R. Solving the sustainability implementation challenge. Organ. Dyn. 2010, 39, 306–315. [Google Scholar] [CrossRef]
- Yung, E.H.; Chan, E.H. Implementation challenges to the adaptive reuse of heritage buildings: Towards the goals of sustainable, low carbon cities. Habitat Int. 2012, 36, 352–361. [Google Scholar] [CrossRef]
- Acha, S.; Le Brun, N.; Damaskou, M.; Fubara, T.C.; Mulgundmath, V.; Markides, C.N.; Shah, N. Fuel cells as combined heat and power systems in commercial buildings: A case study in the food-retail sector. Energy 2008, 206, 118046. [Google Scholar] [CrossRef]
- Fiskum, R. Fuel cell for buildings program. In Proceedings of the IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference, Honolulu, HI, USA, 27 July–1 August 1997. No.97CH6203. [Google Scholar]
- Li, B.; Liu, Z.; Wu, Y.; Wang, P.; Liu, R.; Zhang, L. Review on photovoltaic with battery energy storage system for power supply to buildings: Challenges and opportunities. J. Energy Storage 2023, 61, 106763. [Google Scholar] [CrossRef]
- Makar, M.; Pravica, L.; Kutija, M. Supercapacitor-based energy storage in elevators to improve energy efficiency of buildings. Appl. Sci. 2022, 12, 7184. [Google Scholar] [CrossRef]
- Calero, I.; Canizares, C.; Bhattacharya, K.; Baldick, R. Duck-curve mitigation in power grids with high penetration of PV generation. In Proceedings of the 2022 IEEE Power Energy Society General Meeting (PESGM), Seattle, WA, USA, 17–21 July 2022. [Google Scholar]
- Tang, H.; Wang, S.; Li, H. Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective. Energy 2021, 219, 119598. [Google Scholar] [CrossRef]
- Sandak, A.; Sandak, J.; Brzezicki, M.; Kutnar, A. Design Building Skins with Biomaterials. In Bio-Based Building Skin; Muthu, S.S., SgT Group, API, Eds.; Springer: Singapore, 2019; pp. 66–72. [Google Scholar]
- Hien, W.N.; Liping, W.; Chandra, A.N.; Pandey, A.R.; Xiaolin, W. Effects of double glazed facade on energy consumption, thermal comfort and condensation for a typical office building in Singapore. Energy Build. 2005, 37, 563–572. [Google Scholar] [CrossRef]
- Latha, P.; Darshana, Y.; Venugopal, V. Role of building material in thermal comfort in tropical climates—A review. J. Build. Eng. 2015, 3, 104–113. [Google Scholar] [CrossRef]
- Theodosiou, T.G.; Tsikaloudaki, A.G.; Kontoleon, K.J.; Bikas, D.K. Thermal bridging analysis on cladding systems for building facades. Energy Build. 2015, 109, 377–384. [Google Scholar] [CrossRef]
- Allard, F.; Alvarez, S.; Dasvalaki, E.; Guarracino, G.; Maldonado, E.; Sciuto, S.; Vandaele, L. Natural Ventilation in Buildings: A Design Handbook; James James: London, UK, 1998. [Google Scholar]
- Wong, I.L. A review of daylighting design and implementation in buildings. Renew. Sustain. Energy Rev. 2017, 74, 959–968. [Google Scholar] [CrossRef]
- Lstiburek, J. Understanding vapor barrier. ASHRAE J. 2004, 46, 40–51. [Google Scholar]
- Straube, J. Moisture in Buildings. ASHRAE J. Moisture Control. Ser. 2002, 44, 15–19. [Google Scholar]
- Bella, A.D.; Granzotto, N.; Pavarin, C. Comparative analysis of thermal and acoustic performance of building elvements. In Proceedings of the Forum Acusticum, Krakow, Poland, 7–12 September 2014. PACs no.43.55.Ti. [Google Scholar]
- Yang, W.; Jeon, J.Y. Design strategies and elements of building envelope for urban acoustic environment. Build. Environ. 2020, 182, 107121. [Google Scholar] [CrossRef]
- Biyik, E.; Araz, M.; Hepbasli, A.; Shahrestani, M.; Yao, R.; Shao, L.; Essah, E.; Oliveira, A.; Cano, T.; Rico, E.; et al. A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. Int. J. 2017, 20, 833–858. [Google Scholar] [CrossRef]
- Tazvinga, H.; Thopil, M.; Numbi, P.B.; Adefarati, T. Distributed renewable energy technologies. In Handbook of Distributed Generation; Bansal, R., Ed.; Springer Nature: Cham, Switzerland, 2017; pp. 3–37. [Google Scholar]
- Homeowner’s Guide to Going Solar. Available online: https://www.energy.gov/eere/solar/homeowners-guide-going-solar (accessed on 19 November 2023).
- Installing and Maintaining a Small Wind Electric System. Available online: https://www.energy.gov/energysaver/installing-and-maintaining-small-wind-electric-system#:~:text=Small%20wind%20turbines%20used%20in,kilowatt%2Dhours%20per%20month) (accessed on 19 November 2023).
- Access to Electricity. Available online: https://www.iea.org/reports/sdg7-data-and-projections/access-to-electricity (accessed on 7 July 2023).
- Atasoy, T.; Akinc, H.E.; Ercin, O. An analysis on smart grid applications and grid integration of renewable energy systems in smart cities. In Proceedings of the 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 22–25 November 2015. [Google Scholar]
- Boxwell, M. Solar Electricity Handbook: A Simple, Practical Guide to Solar Energy—Designing and Installing Photovoltaic Solar Electric Systems; Greenstring: Nairobi, Kenya, 2010. [Google Scholar]
- Gholami, H.; Nils Røstvik, H.; Steemers, K. The contribution of building-integrated photovoltaics (BIPV) to the concept of nearly zero-energy cities in Europe: Potential and challenges ahead. Energies 2021, 14, 6015. [Google Scholar] [CrossRef]
- Solar Data Cheat Sheet. Available online: https://www.seia.org/research-resources/solar-data-cheat-sheet (accessed on 9 July 2023).
- Solar Photovoltaic Applications Seminar, Design, Installation and Operation of Small, Stand-Alone Photovoltaic Power Systems; PRC Energy Analysis Company: Fairfax County, VA, USA, 1980.
- Roberts, S.; Guariento, N. Building Integrated Photovoltaics; Birkhäuser: Boston, MA, USA, 2009. [Google Scholar]
- Residential buildings factsheet. Available online: https://css.umich.edu/sites/default/files/2023-10/Residential%20BuildingsCSS01-08.pdf (accessed on 7 July 2023).
- 5 Benefits of Residential Solar. Available online: https://www.energy.gov/energysaver/articles/5-benefits-residential-solarU.S (accessed on 7 July 2023).
- Homes and Buildings in the West and Northeast Have the Largest Share of Small-Scale Solar. Available online: https://www.eia.gov/todayinenergy/detail.php?id=54379 (accessed on 7 July 2023).
- Römer, B.; Reichhart, P.; Kranz, J.; Picot, A. The role of smart metering and decentralized electricity storage for smart grids: The importance of positive externalities. Energy Policy 2012, 50, 486–495. [Google Scholar] [CrossRef]
- Yekini Suberu, M.; Wazir Mustafa, M.; Bashir, N. Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renew. Sustain. Energy Rev. 2014, 35, 499–514. [Google Scholar] [CrossRef]
- Battery Storage in the United States: An Update on Market Trends. Available online: https://www.eia.gov/analysis/studies/electricity/batterystorage/ (accessed on 7 September 2023).
- Amirante, R.; Cassone, E.; Distaso, E.; Tamburrano, P. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies. Energy Convers. Manag. 2017, 132, 372–387. [Google Scholar] [CrossRef]
- Liu, C.; Li, F.; Ma, L.; Cheng, H. Advanced Materials for Energy Storage. Adv. Mater. 2010, 22, E28–E62. [Google Scholar] [CrossRef] [PubMed]
- Lvov, S.N. Introduction to Electrochemical Science and Engineering; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Khoury, J.; Mbayed, R.; Salloum, G.; Monmasson, E. Optimal sizing of a residential PV-battery backup for an intermittent primary energy source under realistic constraints. Energy Build. 2015, 105, 206–216. [Google Scholar] [CrossRef]
- Lund, H.; Marszal, A.; Heiselberg, P. Zero energy buildings and mismatch compensation factors. Energy Build. 2011, 43, 1646–1654. [Google Scholar] [CrossRef]
- Hall, D.M.; Grenier, J.; Duffy, T.S.; Lvov, S.N. The Energy Storage Density of Redox Flow Battery Chemistries: A Thermodynamic Analysis. J. Electrochem. Soc. 2020, 167, 110536. [Google Scholar] [CrossRef]
- Energy Storage Technologies. Available online: https://www.cap-xx.com/resource/energy-storage-technologies/ (accessed on 7 July 2023).
- Chatzivasileiadi, A.; Ampatzi, E.; Knight, I. Characteristics of electrical energy storage technologies and their applications in buildings. Renew. Sustain. Energy Rev. 2013, 25, 814–830. [Google Scholar] [CrossRef]
- 2021 International Building Code. Available online: https://codes.iccsafe.org/content/IBC2021P2 (accessed on 7 July 2023).
- Chadly, A.; Azar, E.; Maalouf, M.; Altawafshih, W.; Mayyas, A.T. Technoeconomic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings. SSRN Electron. J. 2021, 247, 123466. [Google Scholar] [CrossRef]
- Tervo, E.; Agbim, K.; DeAngelis, F.; Hernandez, J.; Kim, H.K.; Odukomaiya, A. An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States. Renew. Sustain. Energy Rev. 2018, 94, 1057–1066. [Google Scholar] [CrossRef]
- Uddin, K.; Gough, R.; Radcliffe, J.; Marco, J.; Jennings, P. Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom. Appl. Energy 2017, 206, 12–21. [Google Scholar] [CrossRef]
- Chadly, A.; Urs, R.; Wei, M.; Mayyas, A.; Maalouf, M. Techno-economic assessment of energy storage systems in green buildings while considering demand uncertainty. Energy Build. 2023, 291, 113130. [Google Scholar] [CrossRef]
- Mayyas, A.; Chadly, A.A.; Khaleel, I.; Maalouf, M. Techno-economic analysis of the Li-ion batteries and reversible fuel cells as energy-storage systems used in green and energy-efficient buildings. Clean Energy. 2021, 5, 273–287. [Google Scholar] [CrossRef]
- Zink, F.; Lu, Y.; Schaefer, L. A solid oxide fuel cell system for buildings. Energy Convers. Manag. 2007, 48, 809–818. [Google Scholar] [CrossRef]
- Boulmrharj, S.; Khaidar, M.; Bakhouya, M.; Ouladsine, R.; Siniti, M.; Zine-dine, K. Performance assessment of a hybrid system with hydrogen storage and fuel cell for Cogeneration in buildings. Sustainability 2020, 12, 4832. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, D. Portland cement electrolyte for structural supercapacitor in building application. Constr. Build. Mater. 2021, 285, 122897. [Google Scholar] [CrossRef]
- MIT Engineers Create an Energy-Storing Supercapacitor from Ancient Materials. Available online: https://news.mit.edu/2023/mit-engineers-create-supercapacitor-ancient-materials-0731#:~:text=Since%20the%20new%20%E2%80%9Csupercapacitor%E2%80%9D%20concrete,be%20used%20whenever%20it’s%20needed (accessed on 19 November 2023).
- Ling, Z.; Wang, Z.; Zhang, M.; Yu, C.; Wang, G.; Dong, Y.; Liu, S.; Wang, Y.; Qiu, J. Sustainable synthesis: Sustainable synthesis and assembly of biomass-derived B/N Co-doped carbon Nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv. Funct. Mater. 2016, 26, 111–119. [Google Scholar] [CrossRef]
- Kordesch, K.; Taucher-Mautner, W. Primary Batteries. In Encyclopedia of Electrochemical Power Sources; Garcje, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 555–564. [Google Scholar]
- Different Types of Secondary Cell Batteries and Their Uses. Available online: https://batteryspecialists.com.au/blogs/news/different-types-of-secondary-cell-batteries-and-their-uses (accessed on 26 October 2023).
- Kolosnitsyn, V.S.; Karaseva, E.V. Lithium-sulfur batteries: Problems and solutions. Russ. J. Electrochem. 2008, 44, 506–509. [Google Scholar] [CrossRef]
- Wang, F.; Hu, C.; Zhou, M.; Wang, K.; Lian, J.; Yan, J.; Cheng, S.; Jiang, K. Research progresses of cathodic hydrogen evolution in advanced lead–acid batteries. Sci. Bull. 2016, 61, 451–458. [Google Scholar] [CrossRef]
- Xu, B.; Oudalov, A.; Ulbig, A.; Andersson, G.; Kirschen, D. Modeling of Lithium-Ion Battery Degradation for Cell Life Assessment. IEEE Trans. Smart Grid 2018, 9, 1131–1140. [Google Scholar] [CrossRef]
- Weber, A.Z.; Mench, M.M.; Meyers, J.P.; Ross, P.N.; Gostick, J.T.; Liu, Q. Redox flow batteries: A review. J. Appl. Electrochem. 2011, 41, 1137–1164. [Google Scholar] [CrossRef]
- Weber, S.; Peters, J.F.; Baumann, M.; Weil, M. Life cycle assessment of a vanadium redox flow battery. Environ. Sci. Technol. 2018, 52, 10864–10873. [Google Scholar] [CrossRef]
- Chakrabarti, B.; Rubio-Garcia, J.; Kalamaras, E.; Yufit, V.; Tariq, F.; Low, C.; Kucernak, A.; Brandon, N. Evaluation of a non-Aqueous vanadium redox flow battery using a deep eutectic solvent and graphene-modified carbon electrodes via electrophoretic deposition. Batteries 2020, 6, 38. [Google Scholar] [CrossRef]
- World’s Largest Flow Battery Energy Storage Station Connected to the Grid. Available online: https://www.eurekalert.org/news-releases/966080#:~:text=The%20Dalian%20Flow%20Battery%20Energy,hours%20(MWh)%20of%20electricity (accessed on 19 November 2023).
- Department of Energy Invest 17.9 Million in Long Duration Energy Storage Technologies. Available online: https://www.energy.gov/eere/articles/department-energy-invests-179-million-long-duration-energy-storage-technologies (accessed on 8 July 2023).
- Residential: Vanadium Battery for Home. Available online: https://www.storen.tech/residential (accessed on 8 July 2023).
- Nguyen, T.A.; Crow, M.L.; Elmore, A.C. Optimal sizing of a vanadium redox battery system for Microgrid systems. IEEE Trans. Sustain. Energy 2015, 6, 729–737. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Qiu, X.; Guggenberger, J.D., II; Crow, M.L.; Elmore, A.C. Performance characterization for photovoltaic-vanadium redox battery Microgrid systems. IEEE Trans. Sustain. Energy 2014, 5, 1379–1388. [Google Scholar] [CrossRef]
- Qiu, X.; Nguyen, T.A.; Guggenberger, J.D.; Crow, M.L.; Elmore, A.C. A Field validated model of a vanadium redox flow battery for Microgrids. IEEE Trans. Smart Grid 2014, 5, 1592–1601. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Skyllas-Kazacos, M.; Bao, J. Optimal sizing of vanadium redox flow battery systems for residential applications based on battery electrochemical characteristics. Energies 2016, 9, 857. [Google Scholar] [CrossRef]
- Mondal, M.; Mandal, K.K.; Datta, A. Solar PV driven hybrid gravity power module—Vanadium redox flow battery energy storage for an energy efficient multi-storied building. Int. J. Energy Res. 2022, 46, 18477–18494. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What are batteries, fuel cells, and supercapacitors? ChemInform 2004, 35, 4245–4270. [Google Scholar] [CrossRef]
- Frackowiak, E. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 2007, 9, 1774–1785. [Google Scholar] [CrossRef]
- Jadhav, V.V.; Mane, R.S.; Shinde, P.V. Electrochemical supercapacitors: History, types, designing processes, operation mechanisms, and advantages and disadvantages. In Bismuth-Ferrite-Based Electrochemical Supercapacitors; Jadhav, V.V., Mane, R.S., Shinde, P.V., Eds.; Springer Nature: Berlin, Germany, 2020; pp. 11–36. [Google Scholar]
- Delgado Andrés, R.; Berestok, T.; Shchyrba, K.; Fischer, A.; Würfel, U. A new figure of merit for solar charging systems: Case study for monolithically integrated Photosupercapacitors composed of a large-area organic solar cell and a carbon double-layer capacitor. Solar RRL 2022, 6, 2200614. [Google Scholar] [CrossRef]
- Berestok, T.; Diestel, C.; Ortlieb, N.; Buettner, J.; Matthews, J.; Schulze, P.S.; Goldschmidt, J.C.; Glunz, S.W.; Fischer, A. High-efficiency monolithic Photosupercapacitors: Smart integration of a perovskite solar cell with a Mesoporous carbon double-layer capacitor. Solar RRL 2021, 5, 2100662. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Pumera, M. Smart energy bricks: Ti3C2@Polymer electrochemical energy storage inside bricks by 3D printing. Adv. Funct. Mater. 2021, 31, 2106990. [Google Scholar] [CrossRef]
- Williams, M. Fuel Cells. In Fuel Cells: Technologies for Fuel Processing; Shekhawat, D., Spivey, J., Berry, D., Eds.; Publishing House: Oxford, UK, 2011; pp. 11–27. [Google Scholar]
- Haile, M.H. Materials for fuel cells. Materialstody 2003, 6, 24–29. [Google Scholar] [CrossRef]
- Comparison of Fuel Cell Technologies. Available online: https://www.energy.gov/eere/fuelcells/comparison-fuel-cell-technologies (accessed on 8 July 2023).
- Pollet, B.G.; Francp, A.A.; Su, H.; Liang, H.; Pasupathi, S. Proton exchange membrane fuel cells. Compend. Hydrog. Energy 2016, 3, 3–56. [Google Scholar]
- Fuel Cell Handbook, 7th ed.; U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory: Morgantown, WV, USA, 2004.
- Lee, K.H.; Strand, R.K. SOFC cogeneration system for building applications, Part 1: Development of SOFC system-level model and the parametric study. Renew. Energy 2009, 34, 2831–2838. [Google Scholar] [CrossRef]
- Beyene, A. Combined Heat and Power Sizing Methodology. In Turbo Expo: Power for Land, Sea, and Air; ASME: Amsterdam, The Netherlands, 3–6 June 2022. [Google Scholar]
- Suwanwarangkul, R.; Croiset, E.; Entchev, E.; Charojrochkul, S.; Pritzker, M.; Fowler, M.; Douglas, P.; Chewathanakup, S.; Mahaudom, H. Experimental and modeling study of solid oxide fuel cell operating with syngas fuel. J. Power Sources 2006, 161, 308–322. [Google Scholar] [CrossRef]
- Behling, N. Fuel Cells and the Challenges Ahead. In Fuel Cells: Current Technology Challenges and Future Research Needs; Behling, N., Ed.; Elsevier: Oxford, UK, 2013; pp. 7–36. [Google Scholar]
- Hibino, T. One-chamber solid oxide fuel cell constructed from a YSZ electrolyte with a Ni anode and LSM cathode. Solid State Ionics 2000, 127, 89–98. [Google Scholar] [CrossRef]
- Barbir, F. Fuel Cells—Exploratory Fuel Cells | Regenerative Fuel Cells. In Encyclopedia of Electrochemical Power Sources; Garche, J., Ed.; Elsevier: Oxford, UK, 2009; pp. 224–237. [Google Scholar]
- Naimaster, E.J.; Sleiti, A.K. Potential of SOFC CHP systems for energy-efficient commercial buildings. Energy Build. 2013, 61, 153–160. [Google Scholar] [CrossRef]
- Jing, R.; Wang, M.; Brandon, N.; Zhao, Y. Multi-criteria evaluation of solid oxide fuel cell based combined cooling heating and power (SOFC-CCHP) applications for public buildings in China. Energy 2017, 141, 273–289. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Sadeghzadeh, M.; Rahimi, A.; Pouriman, M. Technical performance analysis of a combined cooling heating and power (CCHP) system based on solid oxide fuel cell (SOFC) technology—A building application. Energy Convers. Manag. 2019, 198, 111767. [Google Scholar] [CrossRef]
- Lee, K.H.; Strand, R.K. SOFC cogeneration system for building applications, Part 2: System configuration and operating condition design. Renew. Energy 2009, 34, 2839–2846. [Google Scholar] [CrossRef]
- Dong, H.; Tang, P.; Wang, X.; Li, K.; Wang, Y.; Wang, D.; Liu, H.; Yang, S.; Wu, C. Pt/NiO Microsphere Composite as Efficient Multifunctional Catalysts for Nonaqueous Lithium–Oxygen Batteries and Alkaline Fuel Cells: The Synergistic Effect of Pt and Ni. ACS Appl. Mater. Interfaces 2019, 11, 39789–39797. [Google Scholar] [CrossRef] [PubMed]
- Types of Fuel Cells. Available online: https://www.ceb.cam.ac.uk/research/groups/rg-eme/Edu/fuelcells/types-of-fuel-cells#:~:text=Alkaline%20Fuel%20Cell,for%20a%20controlled%20removal%20rate (accessed on 26 October 2023).
- McLean, G.; Niet, T.; Prince-Richard, S.; Djilali, N. An assessment of alkaline fuel cell technology. Fuel Cells Compend. 2005, 27, 117–145. [Google Scholar]
- Cassier, M.; Jones, D.; Ringuede, A.; Lair, V. Electrochemical devices for energy: Fuel cells and electrolytic cells. In Handbook of Membrane Reactors; Basile, A., Ed.; Woodhead: Perth, Australia, 2013; pp. 553–605. [Google Scholar]
- Sanad, M.; Screenivasa, S. Metal-organic framework in fuel cell technology: Fundamentals and application. In Electrochemical Applications of Metal-Organic Frameworks; Dave, S., Sahu, R., Tripathy, B.C., Eds.; Susan Dennis: Portage, MI, USA, 2022; pp. 135–189. [Google Scholar]
- Eapen, D.E.; Suseendiran, S.R.; Rengaswamy, R. Phosphoric acid fuel cells. In Woodhead Publishing Series in Energy, Compendium of Hydrogen Energy; Barbir, F., Basile, A., Veziroglu, T.N., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 57–70. [Google Scholar]
- Brandon, N. Fuel Cells. In Encyclopedia; Cleveland, C.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 749–758. [Google Scholar]
- Dharmalingam, S.; Kugarajah, D.; Sugumar, M. Membranes for Microbial Fuel Cells. In Biomass, Biofuels and Biochemicals, Microbial Electrochemical Technology; Mohan, S.V., Varjamo, S., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 143–194. [Google Scholar]
- Remick, R.; Wheeler, D. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis; National Renewable Energy Laboratory: Golden, CO, USA, 2010. [Google Scholar]
- Ruan, Y.; Liu, Q.; Zhou, W.; Firestone, R.; Gao, W.; Watanabe, T. Optimal option of distributed generation technologies for various commercial buildings. Appl. Energy 2009, 86, 1641–1653. [Google Scholar] [CrossRef]
- Kumar, V.; Ruchira, R.; Hait, S.; Kumar, P.; Kundu, P.P. Performance Trends and Status of Microbial Fuel Cells. In Progress and Recent Trends in Microbial Fuel Cells; Kundu, P.P., Dutta, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 7–24. [Google Scholar]
- Mehmeti, A.; Santoni, F.; Della Pietra, M.; McPhail, S.J. Life cycle assessment of molten carbonate fuel cells: State of the art and strategies for the future. J. Power Souces 2016, 308, 97–108. [Google Scholar] [CrossRef]
- Santa Rita Jail Fuel Cell Power Plant. Available online: https://www.acgov.org/sustain/documents/fuelcellfactsheet.pdf (accessed on 8 July 2023).
- Scott, K.; Xing, L. Direct Methanol Fuel cells. Adv. Chem. Eng. 2012, 41, 145–196. [Google Scholar]
- Badgett, A.; Ruth, M.; Pivovar, B. Economic considerations for hydrogen production with a focus on polymer electrolyte membrane electrolysis. In Electrochemical Power Sources: Fundamentals, Systems, and Applications; Smolinka, T., Garche, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 327–364. [Google Scholar]
- Rosli, R.E.; Sulong, A.B.; Doud, W.R.W.; Zulkifley, M.A.; Husaini, T.; Rosli, M.I.; Majlan, E.H.; Haque, M.A. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrog. Energy 2017, 42, 9293–9314. [Google Scholar] [CrossRef]
- Gabbasa, M.; Sopian, K.; Fudholi, A.; Asim, N. A review of unitized regenerative fuel cell stack: Material, design and research achievements. Int. J. Hydrog. Energy 2014, 39, 17765–17778. [Google Scholar] [CrossRef]
- Jiao, K.; Xuan, J.; Du, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; Huo, S.; et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2020, 595, 361–369. [Google Scholar] [CrossRef]
- Ashari, G.R.; Ehyaei, M.A.; Mozafari, A.; Atabi, F.; Hajidavalloo, E.; Shalbaf, S. Exergy, economic, and environmental analysis of a PEM fuel cell power system to meet electrical and thermal energy needs of residential buildings. J. Fuel Cell Sci. Technol. 2012, 9, 051001. [Google Scholar] [CrossRef]
- Ham, S.; Jo, S.; Dong, H.; Jeong, J.T. A simplified PEM fuel cell model for building cogeneration applications. Energy Build. 2015, 107, 213–225. [Google Scholar] [CrossRef]
- Chahartaghi, M.; Kharkeshi, B.A. Performance analysis of a combined cooling, heating and power system with PEM fuel cell as a prime mover. Appl. Therm. Eng. 2018, 128, 805–817. [Google Scholar] [CrossRef]
- Roy, H.; Rahman, T.; Tasnim, N.; Arju, J.; Rafid, M.; Islam, M.R.; Pervez, M.N.; Cai, Y.; Naddeo, V.; Islam, M.S. Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. Membranes 2023, 13, 490. [Google Scholar] [CrossRef] [PubMed]
- Rahimnejad, M.; Arash, A.; Darvari, S.; Zirepour, A.; Oh, S.-E. Microbial fuel cell as new technology for bioelectricity generation: A review. Alex. Eng. J. 2015, 54, 745–756. [Google Scholar] [CrossRef]
- Logan, B.; Rozendal, R.; Schroder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2003, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Rimbu, G.A.; Wallis, L.; Greenman, J.; Ieropoulos, I. Living architecture: Toward energy generating buildings powered by microbial fuel cells. Front. Energy Res. 2019, 7, 94. [Google Scholar] [CrossRef]
- Neburchilov, V.; Martin, J.; Wang, H.; Zhang, J. A review of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources 2007, 169, 221–238. [Google Scholar] [CrossRef]
- Changing the Way Business Buys Power. Available online: https://www.bloomenergy.com/series10/ (accessed on 19 November 2023).
- Ren, X.; Zelenay, P.; Thomas, S.; Davey, J.; Gottesfeld, S. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. J. Power Sources 2000, 86, 111–116. [Google Scholar] [CrossRef]
- Larrosa-Guerrero, A.; Scott, K.; Head, I.M.; Mateo, F.; Ginesta, A.; Godinez, C. Effect of temperature on the performance of microbial fuel cells. Fuel 2010, 89, 3985–3994. [Google Scholar] [CrossRef]
- Behera, M.; Murthy, S.S.R.; Ghangrekar, M.M. Effect of operating temperature on the performance of microbial fuel cell. Water Sci. Technol. 2011, 64, 917–922. [Google Scholar] [CrossRef]
- Aelterman, P.; Rabaey, K.; Pham, T.; Boon, N.; Verstraete, W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 2006, 40, 3388–3394. [Google Scholar] [CrossRef]
- Varlet, T.; Schmidt, O.; Gambhir, A.; Few, S.; Staggell, I. Comparative life cycle assessment of lithium-ion battery chemistries for residential storage. J. Energy Storage 2020, 28, 101230. [Google Scholar] [CrossRef]
- Kong, L.; Li, C.; Jiang, J.; Pecht, G.M. Li-ion battery fire hazards and safety strategies. Energies 2018, 11, 2191. [Google Scholar] [CrossRef]
- 5 Key Differences between Flow Batteries and Lithium ion Batteries. Available online: https://goenergylink.com/blog/differences-between-flow-batteries-and-lithium-ion/#:~:text=Flow%20batteries%20have%20a%20smaller,time%20than%20lithium%20ion%20batteries) (accessed on 20 August 2023).
- Peng, X.; Taie, Z.; Liu, J.; Zhang, Y.; Peng, X.; Regmi, Y.N.; Fornaciari, J.C.; Capuano, C.; Binny, D.; Kariuki, N.N.; et al. Hierarchical electrode design of highly efficient and stable unitized regenerative fuel cells (URFCs) for long-term energy storage. Energy Environ. Sci. 2020, 13, 4872–4881. [Google Scholar] [CrossRef]
- Soloveichik, G.L. Regenerative fuel cells for energy storage. Proc. IEEE 2014, 102, 964–975. [Google Scholar] [CrossRef]
- U.S. Department of Energy Hydrogen Program: DOE Hydrogen Program. Available online: https://www.hydrogen.energy.gov/ (accessed on 20 August 2023).
- Xi, J.; Xiao, S.; Yu, L.; Wu, L.; Liu, L.; Qiu, X. Broad temperature adaptability of vanadium redox flow battery—Part 2: Cell research. Electrochim. Acta 2016, 191, 695–704. [Google Scholar] [CrossRef]
- A Novel Stack Approach to Enable High Round Trip Efficiencies in Unitized PEM Regenerative Fuel Cells. Available online: https://www.hydrogen.energy.gov/pdfs/review20/fc331_ayers_2020_p.pdf (accessed on 22 September 2023).
- Da Silva Lima, L.; Quartier, M.; Buchmayr, A.; Sanjuan-Delmás, D.; Laget, H.; Corbisier, D.; Mertens, J.; Dewulf, J. Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems. Sustain. Energy Technol. Assessments 2021, 46, 101286. [Google Scholar] [CrossRef]
- Mitlitsky, F.; Myer, B.; Weisberg, A.H.; Molter, M.T.; Smith, W.F. Reversible (unitised) PEM fuel cell devices. Fuel Cells Bull. 1999, 11, 6–11. [Google Scholar] [CrossRef]
- Nguyen, T.; Li, Y. A Novel High-Energy-Density Storage and Operation Concept for Redox Flow Batteries. In Electrochemical Society Meeting Abstracts 239; The Electrochemical Society, Inc.: Pennington, NJ, USA, 2021. [Google Scholar]
- Kebede, A.A.; Kalogianiis, T.; Mierlo, J.V.; Berecibar, M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew. Sustain. Energy Rev. 2022, 159, 112213. [Google Scholar] [CrossRef]
- The Comparison of Different Technologies for On-Board Power Supply of Cruise Ships. Available online: https://nautilus-project.eu/news/the-comparison-of-different-technologies-for-on-board-power-supply-of-cruise-ships (accessed on 19 November 2023).
- NFPA 853: Standard for the Installation of Stationary Fuel Cell Power Systems. Available online: https://www.nfpa.org/codes-and-standards/8/5/3/nfpa-853 (accessed on 19 November 2023).
- NFPA 2: Hydrogen Technologies Code. Available online: https://www.nfpa.org/codes-and-standards/2/nfpa-2 (accessed on 19 November 2023).
- NFPA 855: Standard for the Installation of Stationary Energy Storage Systems. Available online: https://www.nfpa.org/codes-and-standards/8/5/5/nfpa-855 (accessed on 19 November 2023).
- ANSI/CSA FC1-2014 (IEC 62282-3-100:2012,MOD) (FORMERLY ANSI Z21.83) Fuel Cell Power System. Available online: https://h2tools.org/fuel-cell-codes-and-standards/ansicsa-fc1-2014-iec-62282-3-1002012modformerly-ansi-z2183-fuel-cell (accessed on 19 November 2023).
- 2021 International Fire Code (IFC). Available online: https://codes.iccsafe.org/content/IFC2021P2 (accessed on 19 November 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Azari, R.; Poerschke, U.; Hall, D.M. A Review of Potential Electrochemical Applications in Buildings for Energy Capture and Storage. Micromachines 2023, 14, 2203. https://doi.org/10.3390/mi14122203
Zhang J, Azari R, Poerschke U, Hall DM. A Review of Potential Electrochemical Applications in Buildings for Energy Capture and Storage. Micromachines. 2023; 14(12):2203. https://doi.org/10.3390/mi14122203
Chicago/Turabian StyleZhang, Jingshi, Rahman Azari, Ute Poerschke, and Derek M. Hall. 2023. "A Review of Potential Electrochemical Applications in Buildings for Energy Capture and Storage" Micromachines 14, no. 12: 2203. https://doi.org/10.3390/mi14122203
APA StyleZhang, J., Azari, R., Poerschke, U., & Hall, D. M. (2023). A Review of Potential Electrochemical Applications in Buildings for Energy Capture and Storage. Micromachines, 14(12), 2203. https://doi.org/10.3390/mi14122203