Cubic AgBiS2 Powder Prepared Using a Facile Reflux Method for Photocatalytic Degradation of Dyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of AgBiS2 by the Reflux Method
2.3. Photocatalytic Degradation Experiment
2.4. Characterization
3. Results and Discussion
3.1. Structural Characteristics
3.2. UV–Vis Spectroscopy and Band Gap Characterizations
3.3. Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akhil, S.; Balakrishna, R.G. AgBiS2 as a photoabsorber for eco-friendly solar cells: A review. J. Mater. Chem. A 2022, 10, 8615–8625. [Google Scholar] [CrossRef]
- Manimozhi, T.; Kavirajan, S.; Kamala Bharathi, K.; Senthil Kumar, E.; Navaneethan, M. Ultra-low thermal conductivity of AgBiS2 via Sb substitution as a scattering center for thermoelectric applications. J. Mater. Sci. Mater. Electron. 2022, 33, 12615–12628. [Google Scholar] [CrossRef]
- Ganguly, P.; Mathew, S.; Clarizia, L.; Kumar, R.S.; Akande, A.; Hinder, S.; Breen, A.; Pillai, S.C. Theoretical and experimental investigation of visible light responsive AgBiS2-TiO2 heterojunctions for enhanced photocatalytic applications. Appl. Catal. B Environ. 2019, 253, 401–418. [Google Scholar] [CrossRef]
- Wernick, J.H. Constitution of The AgSbS2-PbS, AgBiS2-PbS, and AgBiS2-AgBiSe2 Systems. Am. Mineral. 1960, 45, 591–598. [Google Scholar]
- Geller, S.; Wernick, J.H. Ternary semiconducting compounds with sodium chloride-like structure AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2. Acta Crystallogr. 1959, 12, 46–54. [Google Scholar] [CrossRef]
- Manimozhi, T.; Archana, J.; Navaneethan, M.; Ramamurthi, K. Shape-controlled synthesis of AgBiS2 nano-/microstructures using PEG-assisted facile solvothermal method and their functional properties. Appl. Surf. Sci. 2019, 487, 664–673. [Google Scholar] [CrossRef]
- Thongtem, T.; Tipcompor, N.; Thongtem, S. Characterization of AgBiS2 nanostructured flowers produced by solvothermal reaction. Mater. Lett. 2010, 64, 755–758. [Google Scholar] [CrossRef]
- Sugarthi, S.; Bakiyaraj, G.; Abinaya, R.; Navaneethan, M.; Archana, J.; Shimomura, M. Effect of different growth temperature on the formation of ternary metal chalcogenides AgBiS2. Mater. Sci. Semicond. Process. 2020, 107, 104781. [Google Scholar] [CrossRef]
- Bernechea, M.; Cates, N.; Xercavins, G.; So, D.; Stavrinadis, A.; Konstantatos, G. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat. Photonics 2016, 10, 521–525. [Google Scholar] [CrossRef]
- Öberg, V.A.; Johansson, M.B.; Zhang, X.; Johansson, E.M.J. Cubic AgBiS2 Colloidal Nanocrystals for Solar Cells. ACS Appl. Nano Mater. 2020, 3, 4014–4024. [Google Scholar] [CrossRef]
- Oh, J.T.; Bae, S.Y.; Ha, S.R.; Cho, H.; Lim, S.J.; Boukhvalov, D.W.; Kim, Y.; Choi, H. Water-resistant AgBiS2 colloidal nanocrystal solids for eco-friendly thin film photovoltaics. Nanoscale 2019, 11, 9633–9640. [Google Scholar] [CrossRef]
- Kaowphong, S. Biomolecule-assisted hydrothermal synthesis of silver bismuth sulfide with nanostructures. J. Solid State Chem. 2012, 189, 108–111. [Google Scholar] [CrossRef]
- Pejova, B.; Grozdanov, I.; Nesheva, D.; Petrova, A. Size-Dependent Properties of Sonochemically Synthesized Three-Dimensional Arrays of Close-Packed Semiconducting AgBiS2 Quantum Dots. Chem. Mater. 2008, 20, 2551–2565. [Google Scholar] [CrossRef]
- Tipcompor, N.; Thongtem, S.; Thongtem, T. Transformation of cubic AgBiS2 from nanoparticles to nanostructured flowers by a microwave-refluxing method. Ceram. Int. 2013, 39, S383–S387. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, X.; Shen, X.; Ding, S.; Feng, H.; Wu, G.; Zhang, Y. Optimizing the Synthetic Conditions of “Green” Colloidal AgBiS2 Nanocrystals Using a Low-Cost Sulfur Source. Nanomaterials 2022, 12, 3742. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Peng, L.; Wang, Z.; Konstantatos, G. Environmentally Friendly AgBiS2 Nanocrystal Inks for Efficient Solar Cells Employing Green Solvent Processing. Adv. Energy Mater. 2022, 12, 2200700. [Google Scholar] [CrossRef]
- Bellal, B.; Berger, M.H.; Trari, M. Physical and photoelectrochemical properties of spherical nanoparticles of α-AgBiS2. J. Solid State Chem. 2017, 254, 178–183. [Google Scholar] [CrossRef]
- Voronin, M.V.; Osadchii, E.G. Thermodynamic properties of silver and bismuth sulfosalt minerals, pavonite (AgBi3S5) and matildite (AgBiS2) and implications for ore deposits. Econ. Geol. 2013, 108, 1203–1210. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Yu, H.; Guan, F.; Wang, D. Binary-Ternary Bi2S3-AgBiS2 Rod-to-Rod Transformation via Anisotropic Partial Cation Exchange Reaction. Inorg. Chem. 2019, 58, 12998–13006. [Google Scholar] [CrossRef]
- Tesfaye, F.; Lindberg, D. Thermochemical properties of selected ternary phases in the Ag–Bi–S system. J. Mater. Sci. 2016, 51, 5750–5759. [Google Scholar] [CrossRef]
- Mak, C.H.; Qian, J.; Rogee, L.; Lai, W.K.; Lau, S.P. Facile synthesis of AgBiS2 nanocrystals for high responsivity infrared detectors. RSC Adv. 2018, 8, 39203–39207. [Google Scholar] [CrossRef] [PubMed]
- Akgul, M.Z.; Figueroba, A.; Pradhan, S.; Bi, Y.; Konstantatos, G. Low-Cost RoHS Compliant Solution Processed Photovoltaics Enabled by Ambient Condition Synthesis of AgBiS2 Nanocrystals. ACS Photonics 2020, 7, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, A.N.; Clemente, M.; Lee, S.J.; Mantravadi, A.; Zaikina, J.V. Deep Eutectic Solvent-Assisted Microwave Synthesis of Thermoelectric AgBiS2 and Cu3BiS3. ACS Appl. Energy Mater. 2022, 5, 14858–14868. [Google Scholar] [CrossRef]
- van Embden, J.; Gaspera, E.D. Ultrathin Solar Absorber Layers of Silver Bismuth Sulfide from Molecular Precursors. ACS Appl. Mater. Interfaces 2019, 11, 16674–16682. [Google Scholar] [CrossRef] [PubMed]
- Gu, E.; Lin, X.; Tang, X.; Matt, G.J.; Osvet, A.; Hou, Y.; Jäger, S.; Xie, C.; Karl, A.; Hock, R.; et al. Single molecular precursor ink for AgBiS2 thin films: Synthesis and characterization. J. Mater. Chem. C 2018, 6, 7642–7651. [Google Scholar] [CrossRef]
- Ju, M.-G.; Dai, J.; Ma, L.; Zhou, Y.; Zeng, X.C. AgBiS2 as a low-cost and eco-friendly all-inorganic photovoltaic material: Nanoscale morphology–property relationship. Nanoscale Adv. 2020, 2, 770–776. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, M.; Wu, X.; Qin, W. Comparison of carrier dynamic behavior and photocatalytic molecular oxygen activation of optimized MAPbX3 (X = I, Br). J. Environ. Chem. Eng. 2020, 8, 104241. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, M.; Cui, K.; Li, X.; Zhou, Y.; Li, Y.; Wu, X. Mechanochemical synthesis of MAPbBr3/carbon sphere composites for boosting carrier-involved superoxide species. J. Environ. Sci. 2021, 104, 399–414. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Oyewo, O.A.; Marzouki, R.; Brahmia, A.; Onwudiwe, D.C. Synthesis of AgBiS2/gC3N4 and its application in the photocatalytic reduction of Pb(II) in the matrix of methyl orange, crystal violet, and methylene blue dyes. Ceram. Int. 2023, 49, 6149–6163. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Gao, C.; Chen, Y.; Shen, T.; Dong, M.; Yao, B.; Zhu, Y. Cubic AgBiS2 Powder Prepared Using a Facile Reflux Method for Photocatalytic Degradation of Dyes. Micromachines 2023, 14, 2211. https://doi.org/10.3390/mi14122211
Wang W, Gao C, Chen Y, Shen T, Dong M, Yao B, Zhu Y. Cubic AgBiS2 Powder Prepared Using a Facile Reflux Method for Photocatalytic Degradation of Dyes. Micromachines. 2023; 14(12):2211. https://doi.org/10.3390/mi14122211
Chicago/Turabian StyleWang, Wenzhen, Chengxiong Gao, Yuxing Chen, Tao Shen, Mingrong Dong, Bo Yao, and Yan Zhu. 2023. "Cubic AgBiS2 Powder Prepared Using a Facile Reflux Method for Photocatalytic Degradation of Dyes" Micromachines 14, no. 12: 2211. https://doi.org/10.3390/mi14122211
APA StyleWang, W., Gao, C., Chen, Y., Shen, T., Dong, M., Yao, B., & Zhu, Y. (2023). Cubic AgBiS2 Powder Prepared Using a Facile Reflux Method for Photocatalytic Degradation of Dyes. Micromachines, 14(12), 2211. https://doi.org/10.3390/mi14122211