Numerical Studies on the Motions of Magnetically Tagged Cells Driven by a Micromagnetic Matrix
Abstract
:1. Introduction
2. Physical Modelling
2.1. Constitutive Equations
2.2. Numerical Algorithm
3. Numerical Results and Discussion
3.1. Magnetic-Field Analysis
3.2. Single-Magnetic-Particle Computing
3.3. Multi–Magnetic-Particle Computing
3.3.1. Force Analysis
3.3.2. Motion Analysis
- 1.
- Initial phase:
- 2.
- Competition phase:
- 3.
- Capture phase:
3.4. Extreme Case
3.5. Documentary Support
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, C.-Y.; Wu, L.-L.; Zhang, Z.-L.; Liu, Y.-L.; Wei, S.-Z.; Hu, J.; Tang, M.; Sun, E.-Z.; Gong, Y.-P.; Yu, J.; et al. Quick-Response Magnetic Nanospheres for Rapid, Efficient Capture and Sensitive Detection of Circulating Tumor Cells. ACS Nano 2013, 8, 941–949. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Luo, L.; Huang, S. Magnetic manipulation on the unlabeled nonmagnetic particles. Int. J. Mod. Phys. B 2019, 33, 1950047. [Google Scholar] [CrossRef]
- Luo, L.; He, Y. Magnetically induced flow focusing of non-magnetic microparticles in ferrofluids under inclined magnetic fields. Micromachines 2019, 10, 56. [Google Scholar] [CrossRef]
- Luo, L.; He, Y. Magnetically driven microfluidics for isolation of circulating tumor cells. Cancer Med. 2020, 9, 4207–4231. [Google Scholar] [CrossRef] [PubMed]
- Earhart, C.M.; Hughes, C.E.; Gaster, R.S.; Ooi, C.C.; Wilson, R.J.; Zhou, L.Y.; Humke, E.W.; Xu, L.; Wong, D.J.; Willingham, S.B.; et al. Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips. Lab Chip 2013, 14, 78–88. [Google Scholar] [CrossRef]
- Huang, Y.-Y.; Hoshino, K.; Chen, P.; Wu, C.-H.; Lane, N.; Huebschman, M.; Liu, H.; Sokolov, K.; Uhr, J.W.; Frenkel, E.P.; et al. Immunomagnetic Nanoscreening of Circulating Tumor Cells with a Motion Controlled Microfluidic System. Biomed. Microdevices 2012, 15, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Po, J.W.; Roohullah, A.; Lynch, D.; DeFazio, A.; Harrison, M.; Harnett, P.R.; Kennedy, C.; de Souza, P.; Becker, T.M. Improved ovarian cancer EMT-CTC isolation by immunomagnetic targeting of epithelial EpCAM and mesenchymal N-cadherin. J. Circ. Biomarkers 2018, 7, 184945441878261. [Google Scholar] [CrossRef]
- Li, Z.; Wang, G.; Shen, Y.; Guo, N.; Ma, N. DNA-Templated Magnetic Nanoparticle-Quantum Dot Polymers for Ultrasensitive Capture and Detection of Circulating Tumor Cells. Adv. Funct. Mater. 2018, 28, 1707152. [Google Scholar] [CrossRef]
- Sun, C.; Hassanisaber, H.; Yu, R.; Ma, S.; Verbridge, S.S.; Lu, C. Paramagnetic Structures within a Microfluidic Channel for Enhanced Immunomagnetic Isolation and Surface Patterning of Cells. Sci. Rep. 2016, 6, 29407. [Google Scholar] [CrossRef]
- Wen, C.-Y.; Hu, J.; Zhang, Z.-L.; Tian, Z.-Q.; Ou, G.-P.; Liao, Y.-L.; Li, Y.; Xie, M.; Sun, Z.-Y.; Pang, D.-W. One-step sensitive detection of Salmonella typhimurium by coupling magnetic capture and fluorescence identification with functional nanospheres. Anal. Chem. 2013, 85, 1223–1230. [Google Scholar] [CrossRef]
- Murray, C.; Pao, E.; Tseng, P.; Aftab, S.; Kulkarni, R.; Rettig, M.; Di Carlo, D. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting. Small 2016, 12, 1891–1899. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Choi, M.; Lim, J.; Jo, M.; Han, J.-Y.; Kim, T.M.; Cho, Y. Magnetic Nanowire Networks for Dual-Isolation and Detection of Tumor-Associated Circulating Biomarkers. Theranostics 2018, 8, 505–517. [Google Scholar] [CrossRef]
- Pramanik, A.; Vangara, A.; Nellore, B.P.V.; Sinha, S.S.; Chavva, S.R.; Jones, S.; Ray, P.C. Development of Multifunctional Fluorescent–Magnetic Nanoprobes for Selective Capturing and Multicolor Imaging of Heterogeneous Circulating Tumor Cells. ACS Appl. Mater. Interfaces 2016, 8, 15076–15085. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Krause, S.; Tobin, H.; Mammoto, A.; Kanapathipillai, M.; Ingber, D.E. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 2012, 12, 2175–2181. [Google Scholar] [CrossRef]
- Mousavi, M.Z.; Chen, H.-Y.; Hou, H.-S.; Chang, C.-Y.; Roffler, S.; Wei, P.-K.; Cheng, J.-Y. Label-Free Detection of Rare Cell in Human Blood Using Gold Nano Slit Surface Plasmon Resonance. Biosensors 2015, 5, 98–117. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Paproski, R.J.; Moore, R.B.; Zemp, R. Detection of circulating tumor cells using targeted surface-enhanced Raman scattering nanoparticles and magnetic enrichment. J. Biomed. Opt. 2014, 19, 056014. [Google Scholar] [CrossRef]
- Huang, N.-T.; Hwong, Y.-J.; Lai, R.L. A microfluidic microwell device for immunomagnetic single-cell trapping. Microfluid. Nanofluidics 2018, 22, 16. [Google Scholar] [CrossRef]
- Park, J.W.; Lee, N.-R.; Cho, S.M.; Jung, M.Y.; Ihm, C.; Lee, D.-S. Microdevice for Separation of Circulating Tumor Cells using Embedded Magnetophoresis with V-shaped Ni-Co Nanowires and Immuno-nanomagnetic Beads. ETRI J. 2015, 37, 233–240. [Google Scholar] [CrossRef]
- Shi, W.; Wang, S.; Maarouf, A.; Uhl, C.G.; He, R.; Yunus, D.; Liu, Y. Magnetic particles assisted capture and release of rare circulating tumor cells using wavy-herringbone structured microfluidic devices. Lab Chip 2017, 17, 3291–3299. [Google Scholar] [CrossRef]
- Huang, Y.-Y.; Chen, P.; Wu, C.-H.; Hoshino, K.; Sokolov, K.; Lane, N.; Liu, H.; Huebschman, M.; Frenkel, E.; Zhang, J.X.J. Screening and Molecular Analysis of Single Circulating Tumor Cells Using Micromagnet Array. Sci. Rep. 2015, 5, 16047. [Google Scholar] [CrossRef]
- Yoo, C.E.; Park, J.-M.; Moon, H.-S.; Joung, J.-G.; Son, D.-S.; Jeon, H.-J.; Kim, Y.J.; Han, K.-Y.; Sun, J.-M.; Park, K.; et al. Vertical Magnetic Separation of Circulating Tumor Cells for Somatic Genomic-Alteration Analysis in Lung Cancer Patients. Sci. Rep. 2016, 6, 37392. [Google Scholar] [CrossRef]
- Milano, A.; Mazzetta, F.; Valente, S.; Ranieri, D.; Leone, L.; Botticelli, A.; Onesti, C.E.; Lauro, S.; Raffa, S.; Torrisi, M.R.; et al. Molecular Detection of EMT Markers in Circulating Tumor Cells from Metastatic Non-Small Cell Lung Cancer Patients: Potential Role in Clinical Practice. Anal. Cell. Pathol. 2018, 2018, 3506874. [Google Scholar] [CrossRef]
- Lin, R.; Li, Y.; MacDonald, T.; Wu, H.; Provenzale, J.; Peng, X.; Huang, J.; Wang, L.; Wang, A.Y.; Yang, J.; et al. Improving sensitivity and specificity of capturing and detecting targeted cancer cells with anti-biofouling polymer coated magnetic iron oxide nanoparticles. Colloids Surfaces B Biointerfaces 2017, 150, 261–270. [Google Scholar] [CrossRef]
- Lee, T.Y.; Hyun, K.-A.; Kim, S.-I.; Jung, H.-I. An integrated microfluidic chip for one-step isolation of circulating tumor cells. Sens. Actuators B Chem. 2017, 238, 1144–1150. [Google Scholar] [CrossRef]
- Tang, M.; Wen, C.; Wu, L.; Hong, S.; Hu, J.; Xu, C.; Pang, D.; Zhang, Z. A Chip Assisted Immunomagnetic Separation System for Efficient Capture and in-situ Identification of Circulating Tumor Cells. Lab Chip 2016, 16, 1214–1223. [Google Scholar] [CrossRef]
- Kwak, B.; Lee, J.; Lee, D.; Lee, K.; Kwon, O.; Kang, S.; Kim, Y. Selective isolation of magnetic nanoparticle-mediated heterogeneity subpopulation of circulating tumor cells using magnetic gradient based microfluidic system. Biosens. Bioelectron. 2017, 88, 153–158. [Google Scholar] [CrossRef]
- Chang, Z.-M.; Wang, Z.; Shao, D.; Yue, J.; Xing, H.; Li, L.; Ge, M.; Li, M.; Yan, H.; Hu, H.; et al. Shape Engineering Boosts Magnetic Mesoporous Silica Nanoparticle-Based Isolation and Detection of Circulating Tumor Cells. ACS Appl. Mater. Interfaces 2018, 10, 10656–10663. [Google Scholar] [CrossRef]
- Mei, T.; Lu, X.; Sun, N.; Li, X.; Chen, J.; Liang, M.; Zhou, X.; Fang, Z. Real-time quantitative PCR detection of circulating tumor cells using tag DNA mediated signal amplification strategy. J. Pharm. Biomed. Anal. 2018, 158, 204–208. [Google Scholar] [CrossRef]
- Chen, P.; Huang, Y.-Y.; Hoshino, K.; Zhang, J.X. Microscale Magnetic Field Modulation for Enhanced Capture and Distribution of Rare Circulating Tumor Cells. Sci. Rep. 2015, 5, 8745. [Google Scholar] [CrossRef]
- Xu, H.; Dong, B.; Xiao, Q.; Sun, X.; Zhang, X.; Lyu, J.; Yang, Y.; Xu, L.; Bai, X.; Zhang, S.; et al. Three-Dimensional Inverse Opal Photonic Crystal Substrates toward Efficient Capture of Circulating Tumor Cells. ACS Appl. Mater. Interfaces 2017, 9, 30510–30518. [Google Scholar] [CrossRef]
- Abbott, J.J.; Ergeneman, O.; Kummer, M.P.; Hirt, A.M.; Nelson, B.J. Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies. IEEE Trans. Robot. 2007, 23, 1247–1252. [Google Scholar] [CrossRef]
- Hoshino, K.; Chen, P.; Huang, Y.-Y.; Zhang, X. Computational Analysis of Microfluidic Immunomagnetic Rare Cell Separation from a Particulate Blood Flow. Anal. Chem. 2012, 84, 4292–4299. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, S.; Lee, J.; Nelson, B.J.; Zhang, L.; Choi, H. Fabrication and Manipulation of Ciliary Microrobots with Non-reciprocal Magnetic Actuation. Sci. Rep. 2016, 6, 30713. [Google Scholar] [CrossRef]
- Poudineh, M.; Aldridge, P.M.; Ahmed, S.; Green, B.J.; Kermanshah, L.; Nguyen, V.; Tu, C.; Mohamadi, R.M.; Nam, R.K.; Hansen, A.; et al. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat. Nanotechnol. 2016, 12, 274–281. [Google Scholar] [CrossRef]
- Rampini, S.; Li, P.; Lee, G.U. Micromagnet arrays enable precise manipulation of individual biological analyte–superparamagnetic bead complexes for separation and sensing. Lab Chip 2016, 16, 3645–3663. [Google Scholar] [CrossRef]
- Hoshino, K.; Huang, Y.-Y.; Lane, N.; Huebschman, M.; Uhr, J.W.; Frenkel, E.P.; Zhang, X. Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 2011, 11, 3449–3457. [Google Scholar] [CrossRef]
Calculation Parameters | Symbol | Value |
---|---|---|
Channel height | H (μm) | 90 |
Magnetic block length | l1 (μm) | 20 |
Magnetic block height | h (μm) | 5 |
Magnetic Block Pitch | l2 (μm) | 20 |
target radius | R (μm) | 7 |
Magnetic particle radius | r (μm) | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, S.; Wu, J.; He, Y.; Jiao, F. Numerical Studies on the Motions of Magnetically Tagged Cells Driven by a Micromagnetic Matrix. Micromachines 2023, 14, 2224. https://doi.org/10.3390/mi14122224
Tao S, Wu J, He Y, Jiao F. Numerical Studies on the Motions of Magnetically Tagged Cells Driven by a Micromagnetic Matrix. Micromachines. 2023; 14(12):2224. https://doi.org/10.3390/mi14122224
Chicago/Turabian StyleTao, Shanjia, Jianguo Wu, Yongqing He, and Feng Jiao. 2023. "Numerical Studies on the Motions of Magnetically Tagged Cells Driven by a Micromagnetic Matrix" Micromachines 14, no. 12: 2224. https://doi.org/10.3390/mi14122224
APA StyleTao, S., Wu, J., He, Y., & Jiao, F. (2023). Numerical Studies on the Motions of Magnetically Tagged Cells Driven by a Micromagnetic Matrix. Micromachines, 14(12), 2224. https://doi.org/10.3390/mi14122224