Transceiver Optimization for mmWave Line-of-Sight MIMO Systems Using Hybrid Arrays
Abstract
:1. Introduction
- Based on the proposed 3D channel model, the optimal subarray separation products in the vertical and horizontal directions were derived for maximizing the spectral efficiency and EDoF, respectively, and an analysis of the sensitivity to the non-optimal design was performed by means of deviation factors.
- The theoretical expressions for the eigenvalues of an equivalent LOS MIMO channel matrix were derived as a function of deviation factors, in both cases of optimal and non-optimal designs. The upper and lower bounds of the EDoF are also given.
- The piecewise uniform quantization codebooks for the phase angles in the beamformer and combiner were designed for LOS MIMO systems, which enables the results to be applied in practical systems with quantized RF phase shifters. Analytical expressions for spectral efficiency using the designed codebooks were also derived. The numerical results demonstrate that the designed codebooks outperform the beamsteering codebook in [24] using the same number of quantization bits in terms of spectral efficiency.
2. System Model
2.1. Signal Model
2.2. Channel Model
3. Optimal Design of Planar Subarrays
3.1. Analysis of Eigenvalues
3.2. Analysis of Sensitivity to Displacement
3.3. Upper and Lower Bounds of the EDoF Estimation
4. Quantization Codebook Design for Phase Shifters
5. Numerical and Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahinel, D.; Rommel, S.; Monroy, I.T. Resource Management in Converged Optical and Millimeter Wave Radio Networks: A Review. Appl. Sci. 2022, 12, 221. [Google Scholar] [CrossRef]
- Swindlehurst, A.L.; Ayanoglu, E.; Heydari, P.; Capolino, F. Millimeter-wave massive MIMO: The next wireless revolution? IEEE Commun. Mag. 2014, 52, 56–62. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Li, X.; Xiang, W. Hybridly connected structure for hybrid beamforming in mmWave massive MIMO systems. IEEE Trans. Commun. 2018, 66, 662–674. [Google Scholar] [CrossRef]
- Wang, P.; Li, Y.; Peng, Y.; Liew, S.C.; Vucetic, B. Non-uniform linear antenna array design and optimization for millimeter-wave communications. IEEE Trans. Wirel. Commun. 2016, 15, 7343–7356. [Google Scholar] [CrossRef] [Green Version]
- Ullah, A.; Choi, W. Massive MIMO Assisted Aerial-Terrestrial Network: How Many UAVs Need to Be Deployed? TechRxiv 2022, 10, 36227. [Google Scholar]
- Zhu, L.; Wang, S.; Zhu, J. Adaptive Beamforming Design for Millimeter-Wave Line-of-Sight MIMO Channel. IEEE Commun. Lett. 2019, 23, 2095–2098. [Google Scholar] [CrossRef]
- Jamil, S.; Rahman, M.; Tanveer, J.; Haider, A. Energy Efficiency and Throughput Maximization Using Millimeter Waves–Microwaves HetNets. Electronics 2022, 11, 474. [Google Scholar] [CrossRef]
- Rappaport, T.S.; MacCartney, G.R.; Samimi, M.K.; Sun, S. Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design. IEEE Trans. Commun. 2015, 63, 3029–3056. [Google Scholar] [CrossRef]
- Akdeniz, M.R.; Liu, Y.; Samimi, M.K.; Sun, S.; Rangan, S.; Rappaport, T.S.; Erkip, E. Millimeter Wave Channel Modeling and Cellular Capacity Evaluation. IEEE J. Sel. Areas Commun. 2014, 32, 1164–1179. [Google Scholar] [CrossRef]
- Moon, J.; Cheng, H.; Song, K.; Lee, J. Line-of-Sight Communications with Antenna Misalignments. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Zhang, J.A.; Huang, X.; Dyadyuk, V.; Guo, Y.J. Massive hybrid antenna array for millimeter-wave cellular communications. IEEE Wirel. Commun. 2015, 22, 79–87. [Google Scholar] [CrossRef]
- Chuang, S.; Wu, W.; Liu, Y. High-Resolution AoA Estimation for Hybrid Antenna Arrays. IEEE Trans. Antennas Propag. 2015, 63, 2955–2968. [Google Scholar] [CrossRef]
- Uchendu, I.E.; Kelly, J.R.; Mittra, R.; Gao, Y. Hybrid Parasitic Linear Array Antenna for Fine Beamsteering Applications. IEEE Access 2021, 9, 84899–84909. [Google Scholar] [CrossRef]
- Li, Y.R.; Gao, B.; Zhang, X.D.; Huang, K.B. Beam Management in Millimeter-Wave Communications for 5G and Beyond. IEEE Access 2020, 8, 13282–13293. [Google Scholar] [CrossRef]
- Zhou, L.; Ohashi, Y. Low complexity millimeter-wave LOS-MIMO precoding systems for uniform circular arrays. In Proceedings of the 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 6–9 April 2014; pp. 1293–1297. [Google Scholar]
- Zhu, L.; Zhu, J. Optimal Design of Uniform Circular Antenna Array in mmWave LOS MIMO Channel. IEEE Access 2018, 6, 61022–61029. [Google Scholar] [CrossRef]
- Fan, J.; Liu, H.; Luo, J.; Luo, X.; Zhang, J. Design of a UCA structure with maximum capacity for mmWave LOS MIMO systems. Sci. China Inf. 2022, 65, 139302. [Google Scholar] [CrossRef]
- Bohagen, F.; Orten, P.; Oien, G.E. Construction and capacity analysis of high-rank line-of-sight MIMO channels. In Proceedings of the IEEE Wireless Communications and Networking Conference, 2005, New Orleans, LA, USA, 13–17 March 2005; pp. 432–437. [Google Scholar]
- Bohagen, F.; Orten, P.; Oien, G.E. Design of Optimal High-Rank Line-of-Sight MIMO Channels. IEEE Trans. Wirel. Commun. 2007, 6, 1420–1425. [Google Scholar] [CrossRef]
- Bohagen, F.; Orten, P.; Oien, G.E. Optimal Design of Uniform Planar Antenna Arrays for Strong Line-of-Sight MIMO Channels. In Proceedings of the 2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications, Cannes, France, 2–5 July 2006; pp. 1–5. [Google Scholar]
- Halsig, T.; Lankl, B. Array Size Reduction for High-Rank LOS MIMO ULAs. IEEE Wirel. Commun. Lett. 2015, 4, 649–652. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.; He, S.; Ou, F.; Wei, M.; Huang, Y.; Yang, L. Asymmetric subarray structure design for mmWave LoS MIMO communication systems. In Proceedings of the 2016 IEEE/CIC International Conference on Communications in China (ICCC), Chengdu, China, 27–29 July 2016; pp. 1–6. [Google Scholar]
- Li, R.; He, S.; Huang, Y.; Li, Y.; Yang, L. Analysis of Panel Antenna Arrays in Los MIMO System. IEEE Access 2018, 6, 23303–23315. [Google Scholar] [CrossRef]
- Alkhateeb, A.; Leus, G.; Heath, R.W. Limited Feedback Hybrid Precoding for Multi-User Millimeter Wave Systems. IEEE Trans. Wirel. Commun. 2015, 14, 6481–6494. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y. On the Quantization of Phase Shifters for Hybrid Precoding Systems. IEEE Trans. Signal Proc. 2017, 65, 2237–2246. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, J.A.; Huang, S.; Pan, J.; Huang, X. Quantization with Combined Codebook for Hybrid Array using Two-Phase-Shifter Structure. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Song, X.; Jans, C.; Landau, L.; Cvetkovski, D.; Fettweis, G. A 60 GHz LOS MIMO Backhaul Design Combining Spatial Multiplexing and Beamforming for a 100 Gbps Throughput. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [Google Scholar]
- Song, X.; Landau, L.T.N.; Wang, W.; You, L.; Gao, X.; Fettweis, G.P. On One-Bit Line-of-Sight MIMO Communications at Flexible Communications Distances. IEEE Wirel. Commun. Lett. 2021, 10, 116–120. [Google Scholar] [CrossRef]
- Cho, H.; Park, C.; Lee, N. Capacity-Achieving Precoding with Low-Complexity for Terahertz LOS Massive MIMO using Uniform Planar Arrays. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Replublic of Korea, 21–23 October 2020; pp. 535–539. [Google Scholar]
- Gesbert, D.; Shafi, M.; Shiu, D.; Smith, P.J.; Naguib, A. From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE J. Sel. Areas Commun. 2003, 21, 281–302. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Hong, W.; Wang, H.; Yang, G.; Zhang, N.; Zhao, H.; Chang, J.; Yu, C.; Yu, X.; Tang, H.; et al. Characterization of Line-of-Sight MIMO Channel for Fixed Wireless Communications. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 36–39. [Google Scholar] [CrossRef]
- Ullah, A.; Abbas, Z.H.; Abbas, G.; Muhammad, F.; Kang, J.M. Hybrid millimeter wave heterogeneous networks with spatially correlated user equipment. Digital Commun. Netw. 2022, 10, 1–16. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.; Huang, Y.; Ren, J.; Zhang, D.; Yang, L. Optimal Design of Multiple Panel Arrays in LoS MIMO System. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Bohagen, F.; Orten, P.; Oien, G.E. On spherical vs. plane wave modeling of line-of-sight MIMO channels. IEEE Trans. Commun. 2009, 57, 841–849. [Google Scholar] [CrossRef]
- Pu, X.; Li, X.; Tang, H.; Han, R.; Chen, Q. Optimal transmit antenna placement for short-range indoor 3D MIMO channels. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018; pp. 1–6. [Google Scholar]
- Huang, X.; Guo, Y.J.; Bunton, J.D. A hybrid adaptive antenna array. IEEE Trans. Wirel. Commun. 2010, 9, 1770–1779. [Google Scholar] [CrossRef]
- Magueta, R.; Castanheira, D.; Pedrosa, P.; Silva, A.; Dinis, R.; Gameiro, A. Iterative Analog–Digital Multi-User Equalizer for Wideband Millimeter Wave Massive MIMO Systems. Sensors 2020, 20, 575. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Li, H.; Zhang, J.A.; Huang, X.; Cheng, Z. Transceiver Optimization for mmWave Line-of-Sight MIMO Systems Using Hybrid Arrays. Micromachines 2023, 14, 236. https://doi.org/10.3390/mi14020236
Deng J, Li H, Zhang JA, Huang X, Cheng Z. Transceiver Optimization for mmWave Line-of-Sight MIMO Systems Using Hybrid Arrays. Micromachines. 2023; 14(2):236. https://doi.org/10.3390/mi14020236
Chicago/Turabian StyleDeng, Junwen, Hang Li, Jian Andrew Zhang, Xiaojing Huang, and Zhiqun Cheng. 2023. "Transceiver Optimization for mmWave Line-of-Sight MIMO Systems Using Hybrid Arrays" Micromachines 14, no. 2: 236. https://doi.org/10.3390/mi14020236
APA StyleDeng, J., Li, H., Zhang, J. A., Huang, X., & Cheng, Z. (2023). Transceiver Optimization for mmWave Line-of-Sight MIMO Systems Using Hybrid Arrays. Micromachines, 14(2), 236. https://doi.org/10.3390/mi14020236